Skip to main content

Nanofabrication by Replication

  • Chapter
  • First Online:
Nanofabrication

Abstract

Making sub-100 nm structures can also be done in a simple way, that is, by replication. As long as there is a mold, or a stamp, or a master, which has sub-100 nm surface relief structures, these nanostructures can be replicated in the similar fashion as stamping out millions of compact disks (CD). This was the idea proposed in 1995 when Stephen Y. Chou first reported sub-25 nm holes made in PMMA polymer with an imprinting mold and he coined word “nanoimprint” [1]. Nanoimprinting lithography (NIL) has since undergone phenomenal growth. NIL has become a topic area in many international conferences in the last two decades. Many commercial companies have been established, ranging from producing nanoimprinting tools and nanoimprint stamps to exploring commercial applications of NIL technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou, S.Y., P.R. Krauss, and P.J. Renstrom. 1995. Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters 67(21): 3114–3116.

    Article  Google Scholar 

  2. Chou, S.Y., et al. 1997. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science and Technology B15(6): 2897.

    Article  Google Scholar 

  3. Chou, S.Y. 1997. Patterned magnetic nanostructures and quantized magnetic disks. Proceedings of IEEE 85(4): 652–671.

    Google Scholar 

  4. Wu, W., et al. 1998. Large area high density quantized magnetic disks fabricated using nanoimprint lithography. Journal of Vacuum Science and Technology B16: 3825.

    Article  Google Scholar 

  5. Pepin, A., et al. 2002. Nanoimprint lithography for the fabrication of DNA electrophoresis chip. Microelectronic Engineering 61–62: 927.

    Article  Google Scholar 

  6. Yu, Z., S.J. Schablitsky, and S.Y. Chou. 1999. Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography. Applied Physics Letters 74: 2381.

    Article  Google Scholar 

  7. Wang, J., S.J. Schablitsky, and S.Y. Chou. 1999. Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography. Journal of Vacuum Science and Technology B17: 2957.

    Article  Google Scholar 

  8. Martini, I., et al. 2000. Quantum point contacts fabricated by nanoimprint lithography. Applied Physics Letters 77: 2237.

    Article  Google Scholar 

  9. International technology roadmap for semiconductors. Available from: http://www.itrs.net/.

  10. International technology roadmap for semiconductors. Executive Summary, 2013. 2013 Edition.

    Google Scholar 

  11. Ju, G., et al. 2015. High density heat-assisted magnetic recording media and advanced characterization—Progress and challenges. IEEE Transactions on Magnetics 51(11): 3201709.

    Google Scholar 

  12. Kryder, M. 2006. Fifty years of disk drives and the exciting road ahead. In IDEMA DISKCON USA, Santa Clara.

    Google Scholar 

  13. Malloy, M., and L.C. Litt. 2011. Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing. Journal of Micro/Nanolithography, MEMS, and MOEMS 10(3): 032001.

    Article  Google Scholar 

  14. Dumond, J.J., and H.Y. Low. 2012. Recent developments and design challenges in continuous roller micro- and nanoimprinting. Journal of Vacuum Science and Technology B 30(1): 010801–28.

    Article  Google Scholar 

  15. Torres, C.M.S. 2003. Alternative lithography—Unleashing the potentials of nanotechnology. New York: Kluwer Academic/Plenum Publisher.

    Google Scholar 

  16. Resnick, D. 2014. Chapter 9: Nanoimprinting lithography. In Nanolithography—The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman. Cambridge: Woodhead Publishing.

    Google Scholar 

  17. Heidari, B., et al. 1999. Large scale nanolithography using nanoimprint lithography. Journal of Vacuum Science and Technology B17(6): 2961.

    Article  Google Scholar 

  18. Unno, N., T. Mäkelä, and J. Taniguchi. 2014. Thermal roll-to-roll imprinted nanogratings on plastic film. Journal of Vacuum Science and Technology 32(6): 06FG03-1.

    Google Scholar 

  19. Haffner, M., et al. 2007. Simple high resolution nanoimprint-lithography. Microelectronic Engineering 84: 937–939.

    Article  Google Scholar 

  20. Bird, R.B., R.C. Amstrong, and O. Hassager. 1977. Fluid mechanics. In Dynamics of polymeric liquids, ed. R. Byron Bird, Charles F. Curtiss. John Wiley & Sons.

    Google Scholar 

  21. Schift, H., and L. Heyderman. 2003. Nanorheology: Squeeze flow in hot embossing of thin films. In Alternative lithography, ed. C.M.S. Torres. New York: Kluwer Academic.

    Google Scholar 

  22. Halary, J.L., et al. 1991. Viscoelastic properties of styrene-co-methyl methacrylate random copolymers. Journal of Polymer Science Part B: Polymer Physics 29(8): 933.

    Article  Google Scholar 

  23. Hoffmann, T. 2003. Viscoelastic properties of polymers: Relevance for hot embossing lithography. In Alternative lithography, ed. C.M.S. Torres. New York: Kluwer Academic.

    Google Scholar 

  24. Scheer, H.C., et al. 1998. Problems of the nanoimprinting technique for nanometer scale pattern definition. Journal of Vacuum Science and Technology B16(6): 917.

    Google Scholar 

  25. Landis, S., et al. 2006. Stamp design effect on 100 nm feature size for 8 inch nanoimprint lithography. Nanotechnology 17: 2701–2709.

    Article  Google Scholar 

  26. Cui, B., and T. Veres. 2006. Pattern replication of 100 nm to millimeter-scale features by thermal nanoimprint lithography. Microelectronic Engineering 83: 902–905.

    Article  Google Scholar 

  27. Schulz, H., et al. 2006. Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography. Microelectronic Engineering 83: 259–280.

    Article  Google Scholar 

  28. Nanonex Corp. Available from: http://www.nanonex.com/.

  29. Microresist GmbH. Available from: http://www.microresist.de/.

  30. Bogdanski, N., et al. 2007. Structure size dependent recovery of thin polystyrene layers in thermal imprint lithography. Microelectronic Engineering 84: 860–863.

    Article  Google Scholar 

  31. Workum, K.V., and J.J.D. Pablo. 2003. Computer simulation of the mechanical properties of amorphous polymer nanostructures. Nano Letters 3(10): 1405.

    Article  Google Scholar 

  32. Ro, H., et al. 2006. Evidence for internal stresses induced by nanoimprint lithography. Journal of Vacuum Science and Technology B24(6): 2973.

    Article  Google Scholar 

  33. Mekaru, H. 2014. Formation of metal nanostructures by high-temperature imprinting. Microsystem Technologies 20: 1103–1109.

    Article  Google Scholar 

  34. Ramachandran, S., et al. 2006. Deposition and patterning of diamondlike carbon as antiwear nanoimprint templates. Journal of Vacuum Science and Technology B24(6): 2993.

    Article  Google Scholar 

  35. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, 1996. Nanoimprint lithography. Journal of Vacuum Science and Technology B14(6):4129.

    Google Scholar 

  36. Padeste, C., et al. 2014. Anti-sticking layers for nickel-based nanoreplication tools. Microelectronic Engineering 123: 23–27.

    Article  Google Scholar 

  37. Shiotsu, T., N. Nishikura, and M. Yasuda. 2013. Simulation study on the template release mechanism and damage estimation for various release methods in nanoimprint lithography. Journal of Vacuum Science and Technology 31(6): 06FB07-1.

    Google Scholar 

  38. Konishi, T., et al. 2006. Multi-layered resist process in nanoimprint lithography for high aspect ratio pattern. Microelectronic Engineering 83: 869–872.

    Article  Google Scholar 

  39. Zhang, W., and S.Y. Chou. 2001. Multilevel imprinting lithography with submicron alignment over 4 in. Si wafers. Applied Physics Letters 79(6): 845.

    Article  Google Scholar 

  40. Tan, H., et al. 2004. Current status of nanonex nanoimprint solutions. SPIE 5374: 213–221.

    Google Scholar 

  41. Suss MicroTech. Available from: http://www.suss.com/.

  42. Ahopelto, J., and T. Haatanien. 2003. Step and stamp imprint lithography. In Alternative lithography, ed. C.M.S. Torres. New York: Kluwer Academic.

    Google Scholar 

  43. Chen, Y., et al. 2006. A study of pattern placement error by thermal expansions in nanoimprint lithography. Journal of Microlithography, Microfabrication, and Microsystems 5(5): 139–144.

    Google Scholar 

  44. Lebib, A., et al. 2002. Room temperature and low pressure nanoimprint lithography. Microelectronic Engineering 61–62: 371.

    Article  Google Scholar 

  45. Nakamatsu, K., and S. Matsui. 2007. Room-temperature nanoimprint and nanocontact technologies. In Nanomanufacturing handbook, ed. A. Busnaina. Boca Raton, FL: CRC Press.

    Google Scholar 

  46. Tao, J., et al. 2005. Room temperature nanoimprint lithography using a bilayer of HSQ/PMMA resist stack. Microelectronic Engineering 78–79: 665–669.

    Article  Google Scholar 

  47. Matsui, S., et al. 2001. Room temperature replication in spin on glass by nanoimprint technology. Journal of Vacuum Science and Technology B19(6): 2801.

    Article  MathSciNet  Google Scholar 

  48. Lu, Y., et al. 2006. Patterning layered polymeric multilayer films by room-temperature nanoimprint lithography. Macromolecular Rapid Communications 27(7): 505–510.

    Article  Google Scholar 

  49. Haisma, J., et al. 1996. Mold-assisted nanolithography: A process for reliable pattern replication. Journal of Vacuum Science and Technology B14: 4124.

    Article  Google Scholar 

  50. Voisin, P., et al. 2007. High-resolution fused silica mold fabrication for UV-nanoimprint. Microelectronic Engineering 84: 916–920.

    Article  Google Scholar 

  51. Min, J., et al. 2005. Effect of sidewall properties on the bottom microtrench during SiO2 etching in a CF4 plasma. Journal of Vacuum Science and Technology B23(2): 425.

    Article  Google Scholar 

  52. Cui, Z. 2006. Etching technology. In Micro-nanofabrication technologies and applications. Springer.

    Google Scholar 

  53. Dauksher, W.J., et al. 2003. Step and flash imprint lithography template characterization from an etch perspective. Journal of Vacuum Science and Technology B21(6): 2771.

    Article  Google Scholar 

  54. Kawaguchi, Y., F. Nonaka, and Y. Sanada. 2007. Fluorinated materials for UV nanoimprint lithography. Microelectronic Engineering 84: 973–976.

    Article  Google Scholar 

  55. Otsuka, Y., S. Hiwasa, and J. Taniguchi. 2014. Development of release agent-free replica mould material for ultraviolet nanoimprinting. Microelectronic Engineering 123: 192–196.

    Article  Google Scholar 

  56. Beck, M., and B. Heidari. 2006. Nanoimprint lithography for high volume HDI manufacturing. OnBoard Technology, September: 52.

    Google Scholar 

  57. Wang, X., et al. 2007. High density patterns fabricated in SU-8 by UV curing nanoimprint. Microelectronic Engineering 84: 872–876.

    Article  Google Scholar 

  58. Schmitt, H., and C. Lehrer. 2006. UV polymers for nanoimprint lithography. In 2nd FORNEL workshop on nanoelectronics.

    Google Scholar 

  59. Bender, M., et al. 2002. Multiple imprinting in UV-based nanoimprint lithography: Related material issues. Microelectronic Engineering 61–62: 407–413.

    Article  Google Scholar 

  60. Vogler, M., et al. 2007. Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectronic Engineering 84: 984–988.

    Article  Google Scholar 

  61. Voisin, P., et al. 2007. Characterisation of ultraviolet nanoimprint dedicated resists. Microelectronic Engineering 84: 967–972.

    Article  Google Scholar 

  62. Guo, L.J. 2007. Nanoimprint lithography: Methods and material requirements. Advanced Materials 19: 495–513.

    Article  Google Scholar 

  63. Le, N.V., et al. 2005. Selective dry etch process for step and flash imprint lithography. Microelectronic Engineering 78–79: 464–473.

    Article  Google Scholar 

  64. Colburn, M., et al. 1999. Step and flash imprint lithography: A new approach to high-resolution patterning. Proceedings of SPIE 3676: 379.

    Article  Google Scholar 

  65. Ye, Z., et al. 2011. High density patterned media fabrication using jet and flash imprint lithography. Proceedings of SPIE 7970: 79700L-1.

    Article  Google Scholar 

  66. Resnick, D.J., S.V. Sreenivasan, and C.G. Willson. 2005. Step & flash imprint lithography. Materials Today 8(2): 34–42.

    Article  Google Scholar 

  67. Molecule Imprint Corp. Available from: http://www.molecularimprints.com/.

  68. Melliar-Smith, M. 2007. Lithography beyond 32 nm—A role for imprint? In SPIE advanced lithography.

    Google Scholar 

  69. Murthy, S., et al. 2005. S-FIL technology: Cost of ownership case study. Proceedings of SPIE 5751: 964–975.

    Article  Google Scholar 

  70. Choi, B.J., et al. 2001. Layer-to-layer alignment for step and flash imprint lithography. Proceedings of SPIE 4343: 436–442.

    Article  Google Scholar 

  71. Moel, A., et al. 1993. Novel on-axis interferometric alignment method with sub-10 nm precision. Journal of Vacuum Science and Technology B11(6): 2191.

    Article  Google Scholar 

  72. Muhlberger, M., et al. 2007. A Moiré method for high accuracy alignment in nanoimprint lithography. Microelectronic Engineering 84: 925–927.

    Article  Google Scholar 

  73. Li, N., W. Wu, and S.Y. Chou. 2006. Sub-20-nm Alignment in nanoimprint lithography using Moiré Fringe. Nano Letters 6(11): 2626–2629.

    Article  Google Scholar 

  74. Cheng, X., and L.J. Guo. 2004. One-step lithography for various size patterns with a hybrid mask-mold. Microelectronic Engineering 71: 288–293.

    Article  Google Scholar 

  75. Guo, L.J. 2004. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics 37: R123–R141.

    Article  Google Scholar 

  76. Huang, X.D., et al. 2002. Reversal imprinting by transferring polymer from mold to substrate. Journal of Vacuum Science and Technology B20: 2872.

    Article  Google Scholar 

  77. Kehagias, N., et al. 2005. Three-dimensional polymer structures fabricated by reversal ultraviolet-curing imprint lithography. Journal of Vacuum Science and Technology B23(6): 2954.

    Article  Google Scholar 

  78. Sogo, K., et al. 2007. Reproduction of fine structures by nanocasting lithography. Microelectronic Engineering 84: 909–911.

    Article  Google Scholar 

  79. Yang, B., and S.W. Pang. 2006. Multiple level nanochannels fabricated using reversal UV nanoimprint. Journal of Vacuum Science and Technology B24(6): 2984.

    Article  Google Scholar 

  80. Yoshikawa, T., et al. 2005. Fabrication of 1/4 wave plate by nanocasting lithography. Journal of Vacuum Science and Technology B23(6): 2939.

    Article  Google Scholar 

  81. Hirai, Y., et al. 2005. Fine pattern transfer by nanocasting lithography. Microelectronic Engineering 78–79: 641.

    Article  Google Scholar 

  82. Bao, L.R., et al. 2002. Nanoimprinting over topography and multilayers three-dimensional printing. Journal of Vacuum Science and Technology 20(6): 2881.

    Article  Google Scholar 

  83. Kumar, A., and G.M. Whitesides. 1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Applied Physics Letters 63(14): 2002.

    Article  Google Scholar 

  84. Matyjaszewski, K., and M. Moller (eds.). 2012. Soft lithographic approaches to nanofabrication, polymer science: A comprehensive reference. Amsterdam: Elsevier.

    Google Scholar 

  85. Zhao, X.M., Y.N. Xia, and G.M. Whitesides. 1997. Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry 7(7): 1069–1074.

    Article  Google Scholar 

  86. Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angewandte Chemie International Edition 37: 550–575.

    Article  Google Scholar 

  87. Galloway, A.L., et al. 2010. Micromolding for the fabrication of biological microarrays. Biological Microarrays 671: 249–260.

    Article  Google Scholar 

  88. Tormen, M. 2003. Microcontact printing techniques. In Alternative lithography, ed. C.M.S. Torres. New York: Kluwer Academic.

    Google Scholar 

  89. Hui, C.Y., et al. 2002. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18: 1394–1407.

    Article  Google Scholar 

  90. Delamarche, E., et al. 1997. Stability of molded polydimethylsiloxane microstructures. Advanced Materials 9(9): 741–746.

    Article  Google Scholar 

  91. Schmid, H., and B. Michel. 2000. Siloxane polymers for high-resolution. High-accuracy soft lithography. Macromolecules 33: 3042–3049.

    Article  Google Scholar 

  92. Tormen, M., et al. 2002. Sub-mm thick rubber-elastic stamp on rigid support for high reliability microcontact printing. Microelectronic Engineering 61–62: 469–473.

    Article  Google Scholar 

  93. Lan, H. 2013. Soft UV nanoimprint lithography and its applications. In Updates in advanced lithography, ed. S. Hosaka. New York: InTech.

    Google Scholar 

  94. Plachetka, U., et al. 2006. Comparison of multilayer stamp concepts in UV–NIL. Microelectronic Engineering 83: 944–947.

    Article  Google Scholar 

  95. Hu, X., et al. 2014. High resolution soft mold for UV-curing nanoimprint lithography using an oxygen insensitive degradable material. Journal of Vacuum Science and Technology B 32(6): 06FG07-1.

    Google Scholar 

  96. Yoo, P.J., et al. 2004. Unconventional patterning with a modulus-tunable mold: From imprinting to microcontact printing. Chemistry of Materials 16: 5000–5005.

    Article  Google Scholar 

  97. Odom, T.W., et al. 2002. Generation of 30–50 nm structures using easily fabricated composite PDMS masks. Journal of the American Chemical Society 124: 12112–12113.

    Article  Google Scholar 

  98. Miebori, T., N. Unno, and J. Taniguchi. 2014. Super resolution technique for sub-100 nm nanoimprint mold via mechanical deformation method. Microelectronic Engineering 123: 38–42.

    Article  Google Scholar 

  99. Libioulle, L., et al. 1999. Contact-inking stamps for microcontact printing of alkanethiols on gold. Langmuir 15: 300–304.

    Article  Google Scholar 

  100. Snyder, P.W., et al. 2007. Biocatalytic microcontact printing. The Journal of Organic Chemistry 72: 7459–7461.

    Article  Google Scholar 

  101. Biebuyck, H.A., et al. 1997. Lithography beyond light: Microcontact printing with monolayer resists. IBM Journal of Research and Development 41(1/2): 159.

    Article  Google Scholar 

  102. Chen, Y., et al. 2000. Microcontact printing and pattern transfer with a tri-layer processing. Microelectronic Engineering 53: 253–256.

    Article  Google Scholar 

  103. Kim, E., Y. Xia, and G.M. Whitesides. 1995. Polymer microstructures formed by moulding in capillaries. Nature 376: 581.

    Article  Google Scholar 

  104. Suh, K.Y., and H.H. Lee. 2002. Capillary force lithography: Large-area patterning, self-organisation and anisotropic dewetting. Advanced Functional Materials 12(6–7): 406.

    Google Scholar 

  105. Kim, Y.S., K.Y. Suh, and H.H. Lee. 2001. Fabrication of three-dimensional microstructures by soft molding. Applied Physics Letters 79(14): 2285.

    Article  Google Scholar 

  106. Yoon, H., et al. 2006. Capillary force lithography with impermeable molds. Applied Physics Letters 88: 254104.

    Article  Google Scholar 

  107. Kim, E., et al. 1997. Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. Advanced Materials 9: 651.

    Article  Google Scholar 

  108. Eddings, M.A., and B.K. Gale. 2006. A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. Journal of Micromechanics and Microengineering 16: 2396–2402.

    Article  Google Scholar 

  109. Berre, M.L., et al. 2007. Micro-aspiration assisted lithography. Microelectronic Engineering 84: 864–867.

    Article  Google Scholar 

  110. Lova, P., and C. Soci. 2015. Nanoimprint lithography: Toward functional photonic crystals. In Organic and hybrid photonic crystals, ed. D. Comoretto. New York: Springer.

    Google Scholar 

  111. Mäkelä, T., T. Haatainen, and J. Ahopelto. 2011. Roll-to-roll printed gratings in cellulose acetate web using novel nanoimprinting device. Microelectronic Engineering 88: 2045–2047.

    Article  Google Scholar 

  112. Li, W.-H., et al. 2011. Fabrication of seamless roller molds using step and rotate curved surface photolithography and application on micro-lens array optic film. In Proceedings of the 2011 6th IEEE international conference on nano/micro engineered and molecular systems, 728–731.

    Google Scholar 

  113. Lee, Y.-C., P.-C. Chen, and H.-Y. Lin. 2009. Fabrication of seamless roller mold with excimer laser direct writing technology. In Proceedings of the 2009 6th IEEE international conference on nano/micro engineered and molecular systems, 767–770.

    Google Scholar 

  114. Unno, N., J. Taniguchi, and K. Ishikawa. 2011. Fabrication of a seamless roll mold using inorganic electron beam resist with postexposure bake. Journal of Vacuum Science and Technology B 29(6): 06FC06-1.

    Article  Google Scholar 

  115. Unno, N., and J. Taniguchi. 2011. Fabrication of the metal nano pattern on plastic substrate using roll nanoimprint. Microelectronic Engineering 88: 2149–2153.

    Article  Google Scholar 

  116. Tracton, A.A. 2005. Coatings technology handbook, 3rd ed. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  117. Ahn, S.H., and L.J. Guo. 2008. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials 20: 2044–2049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, Z. (2017). Nanofabrication by Replication. In: Nanofabrication. Springer, Cham. https://doi.org/10.1007/978-3-319-39361-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39361-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39359-9

  • Online ISBN: 978-3-319-39361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics