Skip to main content

Slicing Strategies for the Generalised Type-2 Mamdani Fuzzy Inferencing System

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

Abstract

As a three-dimensional object, there are a number of ways of slicing a generalised type-2 fuzzy set. In the context of the Mamdani Fuzzy Inferencing System, this paper concerns three accepted slicing strategies, the vertical slice, the wavy slice, and the horizontal slice or \(\alpha \)-plane. Two ways of defining the generalised type-2 fuzzy set, vertical slices and wavy slices, are presented. Fuzzification and inferencing is presented in terms of vertical slices. After that, the application of all three slicing strategies to defuzzification is described, and their strengths and weaknesses assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The alternative is the Takagi-Sugeno-Kang FIS for which the output membership functions are either linear or constant; defuzzification is superfluous as the outputs may be aggregated via a simple weighted sum.

  2. 2.

    The optimised inferencing algorithms described in [11] employ vertical slices.

  3. 3.

    Discretisation in itself brings an unavoidable element of approximation. However the exhaustive method does not subsequently introduce further inaccuracies.

  4. 4.

    Independently of Liu, and at about the same time, Wagner and Hagras introduced the notion of zSlices [27], a concept very similar to that of \(\alpha \)-planes.

References

  1. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002). http://dx.doi.org/10.1109/91.995115

    Article  Google Scholar 

  3. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12, 1267–1278 (2012). http://dx.doi.org/10.1016/j.asoc.2011.12.010

    Article  Google Scholar 

  4. Celik, E., Bilisik, O.N., Erdogan, M., Gumus, A.T., Baracli, H.: An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp. Res. Part E Logist. Transp. Rev. 58, 28–51 (2013)

    Article  Google Scholar 

  5. Dereli, T., Altun, K.: Technology evaluation through the use of interval type-2 fuzzy sets and systems. Comput. Ind. Eng. 65(4), 624–633 (2013)

    Article  Google Scholar 

  6. Abbadi, A., Nezli, L., Boukhetala, D.: A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems. Int. J. Electr. Power Energy Syst. 45(1), 456–467 (2013)

    Article  Google Scholar 

  7. Esposito, M., Pietro, G.D.: Interval type-2 fuzzy logic for encoding clinical practice guidelines. Knowl.-Based Syst. 54, 329–341 (2013). http://dx.doi.org/10.1016/j.knosys.2013.10.001

    Article  Google Scholar 

  8. Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 279, 615–631 (2014)

    Article  MathSciNet  Google Scholar 

  9. John, R.I., Coupland, S.: Type-2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. 2(1), 57–62 (2007). doi:10.1109/MCI.2007.357194

    Article  Google Scholar 

  10. Linda, O., Manic, M.: General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(5), 883–897 (2012). doi:10.1109/TFUZZ.2012.2187453

    Article  Google Scholar 

  11. Greenfield, S., John, R.I.: Optimised generalised type-2 join and meet operations. In: Proceedings of FUZZ-IEEE 2007, pp. 141–146. London, July 2007

    Google Scholar 

  12. Lucas, L.A., Centeno, T.M., Delgado, M.R.: General type-2 fuzzy inference systems: analysis, design and computational aspects. In: Proceedings of FUZZ-IEEE 2007, pp. 1743–1747. London (2007)

    Google Scholar 

  13. Greenfield, S., Chiclana, F., John, R.I., Coupland, S.: The sampling method of defuzzification for type-2 fuzzy sets: experimental evaluation. Inf. Sci. 189, 77–92 (2012). http://dx.doi.org/10.1016/j.ins.2011.11.042

    Article  MathSciNet  Google Scholar 

  14. Zhou, S.M., Chiclana, F., John, R.I., Garibaldi, J.M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets Syst. 159(24), 3281–3296 (2008). ISSN:0165-0114. http://dx.doi.org/10.1016/j.fss.2008.06.018

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008). doi:10.1016/j.ins.2007.11.014

    Article  MathSciNet  Google Scholar 

  16. Greenfield, S., Chiclana, F.: Defuzzification of the discretised generalised type-2 fuzzy set: experimental evaluation. Inf. Sci. 244, 1–25 (2013). http://dx.doi.org/10.1016/j.ins.2013.04.032

    Article  MathSciNet  MATH  Google Scholar 

  17. Greenfield, S., John, R.I.: The uncertainty associated with a type-2 fuzzy set. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives. Studies in Fuzziness and Soft Computing, vol. 243, pp. 471–483. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-540-93802-6_23

    Chapter  Google Scholar 

  18. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst. 108, 159–178 (1999). doi:10.1016/j.fss.2008.06.018

    Article  MathSciNet  MATH  Google Scholar 

  19. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, PTR, Upper Saddle River (2001)

    MATH  Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - II. Inf. Sci. 8, 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - III. Inf. Sci. 9, 43–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. John, R.I.: Perception modelling using type-2 fuzzy sets. PhD thesis, De Montfort University (2000)

    Google Scholar 

  24. Greenfield, S., Chiclana, F.: Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. Int. J. Approx. Reason. 54(8), 1013–1033 (2013). http://dx.doi.org/10.1016/j.ijar.2013.04.013

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenfield, S., Chiclana, F.: Type-reduction of the discretised interval type-2 fuzzy set: approaching the continuous case through progressively finer discretisation. J. Artif. Intell. Soft Comput. Res. 1, 183–193 (2011)

    Google Scholar 

  26. Mendel, J.M., Liu, F., Zhai, D.: \(\alpha \)-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)

    Article  Google Scholar 

  27. Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)

    Article  Google Scholar 

  28. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: Proceedings of FUZZ-IEEE 2011, pp. 2131–2138. Taiwan (2011)

    Google Scholar 

  29. Greenfield, S., Chiclana, F., Coupland, S., John, R.I.: The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inf. Sci. 179(13), 2055–2069 (2009). http://dx.doi.org/10.1016/j.ins.2008.07.011

    Article  MathSciNet  MATH  Google Scholar 

  30. Greenfield, S., Chiclana, F., John, R.I.: Type-reduction of the discretised interval type-2 fuzzy set. In: Proceedings of FUZZ-IEEE 2009, pp. 738–743. Jeju Island, Korea, August 2009

    Google Scholar 

  31. Nie, M., Tan, W.W.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: Proceedings of FUZZ-IEEE 2008, pp. 1425–1432, Hong Kong, June 2008

    Google Scholar 

  32. Greenfield, S., Chiclana, F.: Combining the \(\alpha \)-plane representation with an interval defuzzification method. In: Proceedings of EUSFLAT-LFA 2011, pp. 920–927, Aix-les-Bains, July 2011

    Google Scholar 

  33. Greenfield, S., Chiclana, F.: The structure of the type-reduced set of a continuous type-2 fuzzy set. In: Proceedings of EUSFLAT 2013, Milan, September 2013. http://dx.doi.org/10.2991/eusflat.2013.102

  34. Greenfield, S., Chiclana, F.: Type-reduced set structure and the truncated type-2 fuzzy set. Technical Report, DMU

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Greenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Greenfield, S., Chiclana, F. (2016). Slicing Strategies for the Generalised Type-2 Mamdani Fuzzy Inferencing System. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics