Skip to main content

Antimicrobial Drug Efflux Pumps in Pseudomonas aeruginosa

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Pseudomonas aeruginosa is a major opportunistic pathogen that exhibits high-level intrinsic and acquired multiple antimicrobial resistance. In addition to the accumulation of individual drug-specific resistance mechanisms, such resistance phenotypes are attributed to the interplay between the polyspecific multidrug efflux pumps and the low outer membrane permeability, and this reflects evolution of P. aeruginosa in exposure to diverse hostile environments. A dozen drug efflux pumps, which belong to the resistance-nodulation-cell division (RND) superfamily, have been characterized in P. aeruginosa. Several RND pumps, as represented by MexAB-OprM and MexXY, play important roles in clinically relevant resistance, stress responses, and virulence. Regulation of these pumps is often under the control of local regulators (repressors or activators), global regulators, two-component regulatory systems, and modulators, whose mutations produce elevated antimicrobial resistance in many clinical isolates. This chapter provides an up-to-date overview of antimicrobial drug efflux pumps in P. aeruginosa with a focus on their substrates, regulation, inhibition, and clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy K (2015) Pseudomonas aeruginosa: evolution of antimicrobial resistance and implications for therapy. Semin Respir Crit Care Med 36:44–55. doi:10.1055/s-0034-1396907

    Article  PubMed  Google Scholar 

  2. Sousa AM, Pereira MO (2014) Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs-a review. Pathogens 3:680–703. doi:10.3390/pathogens3030680

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec JY, Bertrand X (2015) Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res 11:9. doi:10.1186/s12917-015-0324-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. King JD, Kocincova D, Westman EL, Lam JS (2009) Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immunol 15:261–312. doi:10.1177/1753425909106436

    Article  CAS  Google Scholar 

  5. Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520. doi:10.1146/annurev-micro-092611-150055

    Article  CAS  PubMed  Google Scholar 

  6. Kazmierczak BI, Schniederberend M, Jain R (2015) Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol 28:78–82. doi:10.1016/j.mib.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  7. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310. doi:10.1038/nature02122

    Article  CAS  PubMed  Google Scholar 

  8. Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674. doi:10.2217/fmb.10.125

    Article  PubMed  Google Scholar 

  9. Livermore DM (2001) Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47:247–250. doi:10.1093/jac/47.3.247

    Article  CAS  PubMed  Google Scholar 

  10. Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  11. U. S. Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States, 2013. CDC, Atlanta

    Google Scholar 

  12. Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS (2016) In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from United States medical centers by Census region (2014). Antimicrob Agents Chemother 60:2537–2541. doi:10.1128/AAC.03056-15

    Google Scholar 

  13. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Google Scholar 

  15. Poole K, Krebes K, McNally C, Neshat S (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X-Z, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741. doi:10.1128/AAC.38.8.1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X-Z, Ma D, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 38:1742–1752. doi:10.1128/AAC.38.8.1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X-Z, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953. doi:10.1128/AAC.39.9.1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264

    CAS  PubMed  Google Scholar 

  20. Li X-Z (2012) Multidrug resistance efflux pumps of Pseudomonas aeruginosa: a 10-year update. Chin J Antibiot 37:481–500. doi:10.13461/j.cnki.cja.005039

    CAS  Google Scholar 

  21. Poole K (2013) Pseudomonas aeruginosa efflux pumps. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Norfolk, pp 175–206

    Google Scholar 

  22. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rolinson GN (1971) Bacterial resistance to penicillins and cephalosporins. Proc R Soc Lond B Biol Sci 179:403–410. doi:10.1098/rspb.1971.0105

    Article  CAS  PubMed  Google Scholar 

  24. Sykes RB (1975) Resistance of Pseudomonas aeruginosa to antimicrobial drugs. Prog Med Chem 12:333–393. doi:10.1016/S0079-6468(08)70180-2

    Article  CAS  PubMed  Google Scholar 

  25. Leive L (1974) The barrier function of the Gram-negative envelope. Ann N Y Acad Sci 235:109–129. doi:10.1111/j.1749-6632.1974.tb43261.x

    Article  CAS  PubMed  Google Scholar 

  26. Decad GM, Nikaido H (1976) Outer membrane of Gram-negative bacteria. XII. Molecular-sieving function of cell wall. J Bacteriol 128:325–336

    Google Scholar 

  27. Hancock RE, Decad GM, Nikaido H (1979) Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PAO1. Biochim Biophys Acta 554:323–331. doi:10.1016/0005-2736(79)90373-0

    Google Scholar 

  28. Benz R, Hancock RE (1981) Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochim Biophys Acta 646:298–308. doi:10.1016/0005-2736(81)90336-9

    Article  CAS  PubMed  Google Scholar 

  29. Angus BL, Carey AM, Caron DA, Kropinski AM, Hancock RE (1982) Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309. doi:10.1128/AAC.21.2.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshimura F, Nikaido H (1982) Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 152:636–642

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikaido H, Nikaido K, Harayama S (1991) Identification and characterization of porins in Pseudomonas aeruginosa. J Biol Chem 266:770–779

    CAS  PubMed  Google Scholar 

  32. Sugawara E, Nestorovich EM, Bezrukov SM, Nikaido H (2006) Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 281:16220–16229. doi:10.1074/jbc.M600680200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugawara E, Nagano K, Nikaido H (2010) Factors affecting the folding of Pseudomonas aeruginosa OprF porin into the one-domain open conformer. mBio 1:e00228–10. doi:10.1128/mBio.00228-10

  34. Plésiat P, Nikaido H (1992) Outer membranes of Gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6:1323–1333. doi:10.1111/j.1365-2958.1992.tb00853.x

    Google Scholar 

  35. Plésiat P, Aires JR, Godard C, Kohler T (1997) Use of steroids to monitor alterations in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 179:7004–7010

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann W (1980) Penetration of β-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrob Agents Chemother 18:94–100. doi:10.1128/AAC.18.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kropinski AM, Kuzio J, Angus BL, Hancock RE (1982) Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 21:310–319. doi:10.1128/AAC.21.2.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bryan LE, O’Hara K, Wong S (1984) Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:250–255. doi:10.1128/AAC.26.2.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trias J, Nikaido H (1990) Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 34:52–57. doi:10.1128/AAC.34.1.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Preheim LC, Penn RG, Sanders CC, Goering RV, Giger DK (1982) Emergence of resistance to β-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 22:1037–1041. doi:10.1128/AAC.22.6.1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanders CC, Sanders WE Jr, Goering RV, Werner V (1984) Selection of multiple antibiotic resistance by quinolones, β-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 26:797–801. doi:10.1128/AAC.26.6.797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bragman S, Sage R, Booth L, Noone P (1986) Ceftazidime in the treatment of serious Pseudomonas aeruginosa sepsis. Scand J Infect Dis 18:425–429. doi:10.3109/00365548609032359

    Article  CAS  PubMed  Google Scholar 

  43. Chow AW, Wong J, Bartlett KH, Shafran SD, Stiver HG (1989) Cross-resistance of Pseudomonas aeruginosa to ciprofloxacin, extended-spectrum β-lactams, and aminoglycosides and susceptibility to antibiotic combinations. Antimicrob Agents Chemother 33:1368–1372. doi:10.1128/AAC.33.8.1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Piddock LJ, Hall MC, Bellido F, Bains M, Hancock RE (1992) A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1057–1061. doi:10.1128/AAC.36.5.1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rella M, Haas D (1982) Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249. doi:10.1128/AAC.33.1.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robillard NJ, Scarpa AL (1988) Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 32:535–539. doi:10.1128/AAC.33.1.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Legakis NJ, Tzouvelekis LS, Makris A, Kotsifaki H (1989) Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin. Antimicrob Agents Chemother 33:124–127. doi:10.1128/AAC.33.1.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Celesk RA, Robillard NJ (1989) Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 33:1921–1926. doi:10.1128/AAC.33.11.1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fukuda H, Hosaka M, Hirai K, Iyobe S (1990) New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 34:1757–1761. doi:10.1128/AAC.34.9.1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hashmi ZS, Smith JM (1991) Outer membrane changes in quinolone resistant Pseudomonas aeruginosa. J Antimicrob Chemother 28:465–470. doi:10.1093/jac/28.3.465

    Article  CAS  PubMed  Google Scholar 

  51. Masuda N, Ohya S (1992) Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1847–1851. doi:10.1128/AAC.36.9.1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lei Y, Sato K, Nakae T (1991) Ofloxacin-resistant Pseudomonas aeruginosa mutants with elevated drug extrusion across the inner membrane. Biochem Biophys Res Commun 178:1043–1048. doi:10.1016/0006-291X(91)90997-L

    Article  CAS  PubMed  Google Scholar 

  53. Zimmermann W, Rosselet A (1977) Function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrob Agents Chemother 12:368–372. doi:10.1128/AAC.12.3.368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nikaido H, Normark S (1987) Sensitivity of Escherichia coli to various β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol 1:29–36. doi:10.1111/j.1365-2958.1987.tb00523.x

    Article  CAS  PubMed  Google Scholar 

  55. Livermore DM, Davy KW (1991) Invalidity for Pseudomonas aeruginosa of an accepted model of bacterial permeability to β-lactam antibiotics. Antimicrob Agents Chemother 35:916–921. doi:10.1128/AAC.35.5.916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nikaido H (2011) To the happy few. Ann Rev Microbiol 65:1–18. doi:10.1146/annurev-micro-090110-102920

    Article  CAS  Google Scholar 

  57. Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J et al (1996) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724. doi:10.1046/j.1365-2958.1996.281397.x

    Article  CAS  PubMed  Google Scholar 

  58. Köhler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechère JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354. doi:10.1046/j.1365-2958.1997.2281594.x

    Article  PubMed  Google Scholar 

  59. Aires JR, Köhler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, Nguyen LY, Shawar RM et al (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964. doi:10.1038/35023079

    Article  CAS  PubMed  Google Scholar 

  63. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125. doi:10.1007/s13205-013-0155-z

    CAS  PubMed  Google Scholar 

  64. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J et al (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90. doi:10.1186/gb-2006-7-10-r90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Li X-Z, Zhang L, Srikumar R, Poole K (1998) β-Lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:399–403

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X-Z, Zhang L, Poole K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180:2987–2991

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327. doi:10.1128/AAC.44.12.3322-3327.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE, Bianco N (1996) Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 40:2021–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao L, Srikumar R, Poole K (2004) MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720–PA3719. Mol Microbiol 53:1423–1436. doi:10.1111/j.1365-2958.2004.04210.x

    Article  CAS  PubMed  Google Scholar 

  70. Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K (2005) Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1782–1786. doi:10.1128/AAC.49.5.1782-1786.2005

    Google Scholar 

  71. Zhang L, Li X-Z, Poole K (2001) Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother 48:549–552. doi:10.1093/jac/48.4.549

    Article  CAS  PubMed  Google Scholar 

  72. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S, Horikawa M, Okuda J et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:70. doi:10.1186/1471-2180-12-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schweizer HP (1998) Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 42:394–398

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mistry A, Warren MS, Cusick JK, Karkhoff-Schweizer RR, Lomovskaya O, Schweizer HP (2013) High-level pacidamycin resistance in Pseudomonas aeruginosa is mediated by an opp oligopeptide permease encoded by the opp-fabI operon. Antimicrob Agents Chemother 57:5565–5571. doi:10.1128/AAC.01198-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moore JD, Gerdt JP, Eibergen NR, Blackwell HE (2014) Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem 15:435–442. doi:10.1002/cbic.201300701

    Google Scholar 

  76. Caughlan RE, Jones AK, Delucia AM, Woods AL, Xie L, Ma B, Barnes SW, Walker JR et al (2012) Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the Gram-negative pathogen Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:17–27. doi:10.1128/AAC.05417-11

    Google Scholar 

  77. Muller JF, Stevens AM, Craig J, Love NG (2007) Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol 73:4550–4558. doi:10.1128/AEM.00169-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morita Y, Cao L, Gould G, Avison MB, Poole K (2006) nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 188:8649–8654. doi:10.1128/JB.01342-06

    Google Scholar 

  79. Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1320–1328. doi:10.1128/AAC.48.4.1320-1328.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sivaneson M, Mikkelsen H, Ventre I, Bordi C, Filloux A (2011) Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression. Mol Microbiol 79:1353–1366. doi:10.1111/j.1365-2958.2010.07527.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363. doi:10.1128/JB.00318-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978. doi:10.1128/AAC.47.3.972-978.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murata T, Gotoh N, Nishino T (2002) Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett 217:57–63. doi:10.1111/j.1574-6968.2002.tb11456.x

    Article  CAS  PubMed  Google Scholar 

  84. Baum EZ, Crespo-Carbone SM, Morrow BJ, Davies TA, Foleno BD, He W, Queenan AM, Bush K (2009) Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:2785–2790. doi:10.1128/AAC.00018-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Caughlan RE, Sriram S, Daigle DM, Woods AL, Buco J, Peterson RL, Dzink-Fox J, Walker S et al (2009) Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression. Antimicrob Agents Chemother 53:5015–5021. doi:10.1128/AAC.00253-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Muller C, Plésiat P, Jeannot K (2011) A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1211–1221. doi:10.1128/AAC.01252-10

    Article  CAS  PubMed  Google Scholar 

  87. Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K, Kaneko Y, Singh PK, Manoil C (2009) Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A 106:14570–14575. doi:10.1073/pnas.0903619106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morita Y, Gilmour C, Metcalf D, Poole K (2009) Translational control of the antibiotic inducibility of the PA5471 gene required for mexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 191:4966–4975. doi:10.1128/JB.00073-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shi J, Jin Y, Bian T, Li K, Sun Z, Cheng Z, Jin S, Wu W (2015) SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling in Pseudomonas aeruginosa. Mol Microbiol 98:370–383. doi:10.1111/mmi.13126

    Article  CAS  PubMed  Google Scholar 

  90. Lau CH, Fraud S, Jones M, Peterson SN, Poole K (2013) Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:2243–2251. doi:10.1128/AAC.00170-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lau CH, Krahn T, Gilmour C, Mullen E, Poole K (2014) AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiol Open 4:121–135. doi:10.1002/mbo3.226

    Article  CAS  Google Scholar 

  92. Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T et al (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 51:991–994. doi:10.1093/jac/dkg173

    Article  CAS  PubMed  Google Scholar 

  93. Fraud S, Campigotto AJ, Chen Z, Poole K (2008) MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52:4478–4482. doi:10.1128/AAC.01072-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeannot K, Elsen S, Köhler T, Attree I, van Delden C, Plésiat P (2008) Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462. doi:10.1128/AAC.01107-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Silva M, Ning C, Ghanbar S, Zhanel G, Logsetty S, Liu S, Kumar A (2015) Evidence that a novel quaternary compound and its organic N-chloramine derivative do not select for resistant mutants of Pseudomonas aeruginosa. J Hosp Infect 91:53–58. doi:10.1016/j.jhin.2015.05.009

    Google Scholar 

  96. Nayar AS, Dougherty TJ, Reck F, Thresher J, Gao N, Shapiro AB, Ehmann DE (2015) Target-based resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a novel bacterial type II topoisomerase inhibitor. Antimicrob Agents Chemother 59:331–337. doi:10.1128/AAC.04077-14

    Article  PubMed  CAS  Google Scholar 

  97. Purssell A, Poole K (2013) Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology 159:2058–2073. doi:10.1099/mic.0.069286-0

    Google Scholar 

  98. Liang H, Deng X, Li X, Ye Y, Wu M (2014) Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res 42:10307–10320. doi:10.1093/nar/gku586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gillis RJ, White KG, Choi K-H, Wagner VE, Schweizer HP, Iglewski BH (2005) Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 49:3858–3867. doi:10.1128/AAC.49.9.3858-3867.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fargier E, Mac Aogain M, Mooij MJ, Woods DF, Morrissey JP, Dobson AD, Adams C, O’Gara F (2012) MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511. doi:10.1128/JB.06632-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang D, Seeve C, Pierson LS 3rd, Pierson EA (2013) Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 14:618. doi:10.1186/1471-2164-14-618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Westfall LW, Carty NL, Layland N, Kuan P, Colmer-Hamood JA, Hamood AN (2006) mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. FEMS Microbiol Lett 255:247–254. doi:10.1111/j.1574-6968.2005.00075.x

    Google Scholar 

  103. Lamarche MG, Deziel E (2011) MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS One 6:e24310. doi:10.1371/journal.pone.0024310

    Google Scholar 

  104. Aendekerk S, Diggle SP, Song Z, Hoiby N, Cornelis P, Williams P, Camara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125. doi:10.1099/mic.0.27631-0

    Article  CAS  PubMed  Google Scholar 

  105. Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE (2005) Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun 73:2958–2966. doi:10.1128/IAI.73.5.2958-2966.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321. doi:10.1111/j.1365-2958.2006.05306.x

    Article  CAS  PubMed  Google Scholar 

  107. Chuanchuen R, Narasaki CT, Schweizer HP (2002) The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 184:5036–5044. doi:10.1128/JB.184.18.5036-5044.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chuanchuen R, Gaynor JB, Karkhoff-Schweizer R, Schweizer HP (2005) Molecular characterization of MexL, the transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1844–1851. doi:10.1128/AAC.49.5.1844-1851.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mima T, Sekiya H, Mizushima T, Kuroda T, Tsuchiya T (2005) Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 49:999–1002. doi:10.1111/j.1348-0421.2005.tb03696.x

    Article  CAS  PubMed  Google Scholar 

  110. Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 52:572–575. doi:10.1093/jac/dkg390

    Article  CAS  PubMed  Google Scholar 

  111. Chiang WC, Pamp SJ, Nilsson M, Givskov M, Tolker-Nielsen T (2012) The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol 65:245–256. doi:10.1111/j.1574-695X.2012.00929.x

    Article  CAS  PubMed  Google Scholar 

  112. Yang L, Chen L, Shen L, Surette M, Duan K (2011) Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence. J Microbiol 49:107–114. doi:10.1007/s12275-011-0186-2

    Article  CAS  PubMed  Google Scholar 

  113. Mima T, Kohira N, Li Y, Sekiya H, Ogawa W, Kuroda T, Tsuchiya T (2009) Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. Microbiology 155:3509–3517. doi:10.1099/mic.0.031260-0

    Article  CAS  PubMed  Google Scholar 

  114. Mima T, Joshi S, Gomez-Escalada M, Schweizer HP (2007) Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609. doi:10.1128/JB.00850-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hassan MT, van der Lelie D, Springael D, Romling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417–425. doi:10.1016/S0378-1119(99)00349-2

    Article  CAS  PubMed  Google Scholar 

  116. Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Köhler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768. doi:10.1074/jbc.M312080200

    Article  CAS  PubMed  Google Scholar 

  117. Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189:4561–4568. doi:10.1128/JB.00095-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. He GX, Kuroda T, Mima T, Morita Y, Mizushima T, Tsuchiya T (2004) An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 186:262–265. doi:10.1128/JB.186.1.262-265.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Colinon C, Jocktane D, Brothier E, Rossolini GM, Cournoyer B, Nazaret S (2010) Genetic analyses of Pseudomonas aeruginosa isolated from healthy captive snakes: evidence of high inter- and intrasite dissemination and occurrence of antibiotic resistance genes. Environ Microbiol 12:716–729. doi:10.1111/j.1462-2920.2009.02115.x

    Article  CAS  PubMed  Google Scholar 

  120. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33. doi:10.1128/AAC.47.1.27-33.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kucken D, Feucht H, Kaulfers P (2000) Association of qacE and qacEΔ1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol Lett 183:95–98. doi:10.1111/j.1574-6968.2000.tb08939.x

    Google Scholar 

  122. Jeong JH, Shin KS, Lee JW, Park EJ, Son SY (2009) Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa. J Microbiol 47:753–759. doi:10.1007/s12275-008-0272-2

    Article  CAS  PubMed  Google Scholar 

  123. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452. doi:10.1128/JB.01655-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Hao D, Wang X, Liu T, He C, Xie F, Sun Y, Zhang J (2006) An important role of a “probable ATP-binding component of ABC transporter” during the process of Pseudomonas aeruginosa resistance to fluoroquinolone. Proteomics 6:2495–2503

    Article  CAS  PubMed  Google Scholar 

  125. Chen L, Duan K (2016) A PhoPQ-regulated ABC transporter system exports tetracycline in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:3016–3024. doi:10.1128/AAC.02986-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hannauer M, Yeterian E, Martin LW, Lamont IL, Schalk IJ (2010) An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa. FEBS Lett 584:4751–4755. doi:10.1016/j.febslet.2010.10.051

    Article  CAS  PubMed  Google Scholar 

  127. Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708. doi:10.1111/j.1462-2920.2011.02674.x

    Article  CAS  PubMed  Google Scholar 

  128. Tomaras AP, Crandon JL, McPherson CJ, Nicolau DP (2015) Potentiation of antibacterial activity of the MB-1 siderophore-monobactam conjugate using an efflux pump inhibitor. Antimicrob Agents Chemother 59:2439–2442. doi:10.1128/AAC.04172-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Verchère A, Dezi M, Adrien V, Broutin I, Picard M (2015) In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat Commun 6:6890. doi:10.1038/ncomms7890

  130. Evans K, Poole K (1999) The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiol Lett 173:35–39. doi:10.1111/j.1574-6968.1999.tb13481.x

    Article  CAS  PubMed  Google Scholar 

  131. Masuda N, Sakagawa E, Ohya S (1995) Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:645–649. doi:10.1128/AAC.35.5.916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Srikumar R, Paul CJ, Poole K (2000) Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 182:1410–1414. doi:10.1128/JB.182.5.1410-1414.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plésiat P (1999) In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 43:287–291

    Google Scholar 

  134. Saito K, Yoneyama H, Nakae T (1999) nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol Lett 179:67–72. doi:10.1111/j.1574-6968.1999.tb08709.x

    Article  CAS  PubMed  Google Scholar 

  135. Boutoille D, Corvec S, Caroff N, Giraudeau C, Espaze E, Caillon J, Plesiat P, Reynaud A (2004) Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β-lactam resistance. FEMS Microbiol Lett 230:143–146. doi:10.1016/S0378-1097(03)00882-6

    Article  CAS  PubMed  Google Scholar 

  136. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P (2004) Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48:1797–1802. doi:10.1128/AAC.48.5.1797-1802.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hocquet D, Roussel-Delvallez M, Cavallo JD, Plesiat P (2007) MexAB-OprM- and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Antimicrob Agents Chemother 51:1582–1583. doi:10.1128/AAC.01334-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Campo Esquisabel AB, Rodriguez MC, Campo-Sosa AO, Rodriguez C, Martinez-Martinez L (2011) Mechanisms of resistance in clinical isolates of Pseudomonas aeruginosa less susceptible to cefepime than to ceftazidime. Clin Microbiol Infect 17:1817–1822. doi:10.1111/j.1469-0691.2011.03530.x

    Article  CAS  PubMed  Google Scholar 

  139. Sacha P, Wieczorek P, Ojdana D, Hauschild T, Milewski R, Czaban S, Poniatowski B, Tryniszewska E (2014) Expression of MexAB-OprM efflux pump system and susceptibility to antibiotics of different Pseudomonas aeruginosa clones isolated from patients hospitalized in two intensive care units at University Hospital in Bialystok (northeastern Poland) between January 2002 and December 2009. APMIS 122:931–940. doi:10.1111/apm.12236

    Article  CAS  PubMed  Google Scholar 

  140. Aghazadeh M, Hojabri Z, Mahdian R, Nahaei MR, Rahmati M, Hojabri T, Pirzadeh T, Pajand O (2014) Role of efflux pumps: MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. Infect Genet Evol 24:187–192. doi:10.1016/j.meegid.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  141. Castanheira M, Mills JC, Farrell DJ, Jones RN (2014) Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 58:6844–6850. doi:10.1128/AAC.03681-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Riou M, Avrain L, Carbonnelle S, El Garch F, Pirnay JP, De Vos D, Plésiat P, Tulkens PM et al (2016) Increase of efflux-mediated resistance in Pseudomonas aeruginosa during antibiotic treatment in patients suffering from nosocomial pneumonia. Int J Antimicrob Agents 47:77–83. doi:10.1016/j.ijantimicag.2015.11.004

    Google Scholar 

  143. Vestergaard M, Paulander W, Marvig RL, Clasen J, Jochumsen N, Molin S, Jelsbak L, Ingmer H et al (2016) Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents 47:48–55. doi:10.1016/j.ijantimicag.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  144. Choudhury D, Ghosh A, Dhar Chanda D, Das Talukdar A, Dutta Choudhury M, Paul D, Maurya AP, Chakravorty A et al (2016) Premature termination of MexR leads to overexpression of MexAB-OprM efflux pump in Pseudomonas aeruginosa in a tertiary referral hospital in India. PLoS One 11:e0149156. doi:10.1371/journal.pone.0149156

    Google Scholar 

  145. Quale J, Bratu S, Gupta J, Landman D (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50:1633–1641. doi:10.1128/aac.50.5.1633-1641.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hamzehpour MM, Pechere JC, Plésiat P, Köhler T (1995) OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:2392–2396. doi:10.1128/AAC.39.11.2392

    Google Scholar 

  147. Köhler T, Michea-Hamzehpour M, Plésiat P, Kahr AL, Pechere JC (1997) Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 41:2540–2543

    Google Scholar 

  148. Li X-Z, Poole K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 45:18–22. doi:10.1139/w98-127

    Article  CAS  PubMed  Google Scholar 

  149. Adewoye L, Sutherland A, Srikumar R, Poole K (2002) The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol 184:4308–4312. doi:10.1128/JB.184.15.4308-4312.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Saito K, Akama H, Yoshihara E, Nakae T (2003) Mutations affecting DNA-binding activity of the MexR repressor of mexR-mexA-mexB-oprM operon expression. J Bacteriol 185:6195–6198. doi:10.1128/JB.185.20.6195-6198.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Andrésen C, Jalal S, Aili D, Wang Y, Islam S, Jarl A, Liedberg B, Wretlind B et al (2010) Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci 19:680–692. doi:10.1002/pro.343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nakae T, Saito K, Nakajima A (2000) Effect of sulbactam on anti-pseudomonal activity of β-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and β-lactamase. Microbiol Immunol 44:997–1001. doi:10.1111/j.1348-0421.2000.tb02595.x

    Article  CAS  PubMed  Google Scholar 

  154. Dupont P, Hocquet D, Jeannot K, Chavanet P, Plésiat P (2005) Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother 55:518–522. doi:10.1093/jac/dki030

    Article  CAS  PubMed  Google Scholar 

  155. Papadopoulos CJ, Carson CF, Chang BJ, Riley TV (2008) Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. Appl Environ Microbiol 74:1932–1935. doi:10.1128/AEM.02334-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robertson GT, Doyle TB, Du Q, Duncan L, Mdluli KE, Lynch AS (2007) A novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 189:6870–6881. doi:10.1128/jb.00805-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Köhler T, Kok M, Michea-Hamzehpour M, Plesiat P, Gotoh N, Nishino T, Curty LK, Pechere JC (1996) Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40:2288–2290

    PubMed  PubMed Central  Google Scholar 

  158. Srikumar R, Li X-Z, Poole K (1997) Inner membrane efflux components are responsible for β-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 179:7875–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Köhler T, Michea-Hamzehpour M, Epp SF, Pechere JC (1999) Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 43:424–427

    PubMed  PubMed Central  Google Scholar 

  160. Okamoto K, Gotoh N, Nishino T (2001) Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 45:1964–1971. doi:10.1128/AAC.45.7.1964-1971.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Okamoto K, Gotoh N, Nishino T (2002) Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob Agents Chemother 46:2696–2699. doi:10.1128/AAC.46.8.2696-2699.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Riera E, Cabot G, Mulet X, Garcia-Castillo M, del Campo R, Juan C, Canton R, Oliver A (2011) Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother 66:2022–2027. doi:10.1093/jac/dkr232

    Article  CAS  PubMed  Google Scholar 

  163. Gotoh N, Tsujimoto H, Nomura A, Okamoto K, Tsuda M, Nishino T (1998) Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa. FEMS Microbiol Lett 165:21–27. doi:10.1111/j.1574-6968.1998.tb13122.x

    Article  CAS  PubMed  Google Scholar 

  164. Li X-Z, Poole K (2001) Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 183:12–27. doi:10.1128/JB.183.1.12-27.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A et al (2004) Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819. doi:10.1074/jbc.C400445200

    Article  CAS  PubMed  Google Scholar 

  166. Zhao Q, Li X-Z, Srikumar R, Poole K (1998) Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 42:1682–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chuanchuen R, Murata T, Gotoh N, Schweizer HP (2005) Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Antimicrob Agents Chemother 49:2133–2136. doi:10.1128/AAC.49.5.2133-2136.2005

    Article  PubMed  PubMed Central  Google Scholar 

  168. Morita Y, Tomida J, Kawamura Y (2012) Primary mechanisms mediating aminoglycoside resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7. Microbiology 158:1071–1083. doi:10.1099/mic.0.054320-0

    Article  CAS  PubMed  Google Scholar 

  169. Maseda H, Yoneyama H, Nakae T (2000) Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:658–664. doi:10.1128/AAC.44.3.658-664.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cavallo JD, Hocquet D, Plesiat P, Fabre R, Roussel-Delvallez M, Gerpa (2007) Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. J Antimicrob Chemother 59:1021–1024. doi:10.1093/jac/dkm076

    Article  CAS  PubMed  Google Scholar 

  171. CLSI (2015) Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement M100-S25. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  172. Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP (2007) Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 57:153–161. doi:10.1016/j.diagmicrobio.2006.06.014

    Google Scholar 

  173. Adamson DH, Krikstopaityte V, Coote PJ (2015) Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model. J Antimicrob Chemother 70:2271–2278. doi:10.1093/jac/dkv111

    Google Scholar 

  174. Boutoille D, Jacqueline C, Le Mabecque V, Potel G, Caillon J (2009) In vivo impact of the MexAB-OprM efflux system on β-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection. Int J Antimicrob Agents 33:417–420. doi:10.1016/j.ijantimicag.2008.10.029

    Google Scholar 

  175. Lomovskaya O, Lee A, Hoshino K, Ishida H, Mistry A, Warren MS, Boyer E, Chamberland S et al (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:1340–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150. doi:10.1128/JB.182.11.3142-3150.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pumbwe L, Piddock LJ (2000) Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2861–2864. doi:10.1128/AAC.44.10.2861-2864.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Llanes C, Köhler T, Patry I, Dehecq B, van Delden C, Plésiat P (2011) Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 55:5676–5684. doi:10.1128/AAC.00101-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Poonsuk K, Tribuddharat C, Chuanchuen R (2014) Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. Can J Microbiol 60:437–443. doi:10.1139/cjm-2014-0239

    Article  CAS  PubMed  Google Scholar 

  180. Kanchana P, Rungtip C (2014) The multidrug-resistant Pseudomonas aeruginosa clinical isolates from dogs and cats expressed three multidrug efflux systems simultaneously. Thai J Vet Med 44:453–459

    Google Scholar 

  181. Li X-Z, Zhang L, Poole K (2000) Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45:433–436. doi:10.1093/jac/45.4.433

    Article  CAS  PubMed  Google Scholar 

  182. Li X-Z (2003) Efflux-mediated multiple antibiotic resistance in Pseudomonas aeruginosa. Chin J Antibiot 28:577–596. doi:10.13461/j.cnki.cja.003185

    CAS  Google Scholar 

  183. Li X-Z, Barré N, Poole K (2000) Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885–893. doi:10.1093/jac/46.6.885

    Article  CAS  PubMed  Google Scholar 

  184. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246. doi:10.1128/AAC.44.9.2242-2246.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jeannot K, Sobel ML, El Garch F, Poole K, Plesiat P (2005) Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 187:5341–5346. doi:10.1128/JB.187.15.5341-5346.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lau CH, Hughes D, Poole K (2014) MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: involvement of a putative proximal binding pocket in aminoglycoside recognition. mBio 5:e01068–14. doi:10.1128/mBio.01068-14

  187. Poole K, Lau CH, Gilmour C, Hao Y, Lam JS (2015) Polymyxin susceptibility in Pseudomonas aeruginosa linked to the MexXY-OprM multidrug efflux system. Antimicrob Agents Chemother 59:7276–7289. doi:10.1128/AAC.01785-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hocquet D, Muller A, Blanc K, Plésiat P, Talon D, Monnet DL, Bertrand X (2008) Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:1173–1175. doi:10.1128/AAC.01212-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P (2004) Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680. doi:10.1128/AAC.48.5.1676-1680.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492. doi:10.1073/pnas.0602138103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Feliziani S, Lujan AM, Moyano AJ, Sola C, Bocco JL, Montanaro P, Canigia LF, Argarana CE et al (2010) Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS One 5: e12669. doi:10.1371/journal.pone.0012669

    Google Scholar 

  192. Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199. doi:10.1128/JB.01651-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Qin X, Zerr DM, McNutt MA, Berry JE, Burns JL, Kapur RP (2012) Pseudomonas aeruginosa syntrophy in chronically colonized airways of cystic fibrosis patients. Antimicrob Agents Chemother 56:5971–5981. doi:10.1128/AAC.01371-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Llanes C, Pourcel C, Richardot C, Plésiat P, Fichant G, Cavallo JD, Merens A, Group GS (2013) Diversity of β-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. J Antimicrob Chemother 68:1763–1771. doi:10.1093/jac/dkt115

    Article  CAS  PubMed  Google Scholar 

  195. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070. doi:10.1128/AAC.00148-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pournaras S, Maniati M, Spanakis N, Ikonomidis A, Tassios PT, Tsakris A, Legakis NJ, Maniatis AN (2005) Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother 56:761–764. doi:10.1093/jac/dki296

    Google Scholar 

  197. Hocquet D, Nordmann P, El Garch F, Cabanne L, Plesiat P (2006) Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:1347–1351. doi:10.1128/AAC.50.4.1347-1351.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hocquet D, Berthelot P, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O, Marty N, Grattard F et al (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536. doi:10.1128/AAC.00503-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xavier DE, Picao RC, Girardello R, Fehlberg LC, Gales AC (2010) Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol 10:217. doi:10.1186/1471-2180-10-217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Cabot G, Ocampo-Sosa AA, Dominguez MA, Gago JF, Juan C, Tubau F, Rodriguez C, Moya B et al (2012) Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 56:6349–6357. doi:10.1128/AAC.01388-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A (2012) Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 56:4771–4778. doi:10.1128/AAC.00680-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fehlberg LC, Xavier DE, Peraro PP, Marra AR, Edmond MB, Gales AC (2012) β-Lactam resistance mechanisms in Pseudomonas aeruginosa strains causing bloodstream infections: comparative results between Brazilian and American isolates. Microb Drug Resist 18:402–407. doi:10.1089/mdr.2011.0174

    Article  CAS  PubMed  Google Scholar 

  203. Fournier D, Richardot C, Muller E, Robert-Nicoud M, Llanes C, Plésiat P, Jeannot K (2013) Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother 68:1772–1780. doi:10.1093/jac/dkt098

    Article  CAS  PubMed  Google Scholar 

  204. Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN (2014) Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother 69:1804–1814. doi:10.1093/jac/dku048

    Article  CAS  PubMed  Google Scholar 

  205. Guénard S, Muller C, Monlezun L, Benas P, Broutin I, Jeannot K, Plésiat P (2014) Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:221–228. doi:10.1128/AAC.01252-13

    Google Scholar 

  206. Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M et al (2012) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822:690–713. doi:10.1016/j.bbadis.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  207. Fraud S, Poole K (2011) Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1068–1074. doi:10.1128/AAC.01495-10

    Article  CAS  PubMed  Google Scholar 

  208. Alguel Y, Lu D, Quade N, Sauter S, Zhang X (2010) Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa. J Struct Biol 172:305–310. doi:10.1016/j.jsb.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  209. Jahandideh S (2013) Diversity in structural consequences of MexZ mutations in Pseudomonas aeruginosa. Chem Biol Drug Des 81:600–606. doi:10.1111/cbdd.12104

    Article  CAS  PubMed  Google Scholar 

  210. El’Garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plésiat P (2007) Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 51:1016–1021. doi:10.1128/AAC.00704-06

    Article  PubMed  CAS  Google Scholar 

  211. Lau CH, Fraud S, Jones M, Peterson SN, Poole K (2012) Reduced expression of the rplU-rpmA ribosomal protein operon in mexXY-expressing pan-aminoglycoside-resistant mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:5171–5179. doi:10.1128/AAC.00846-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martha B, Croisier D, Durand D, Hocquet D, Plésiat P, Piroth L, Portier H, Chavanet P (2006) In-vivo impact of the MexXY efflux system on aminoglycoside efficacy in an experimental model of Pseudomonas aeruginosa pneumonia treated with tobramycin. Clin Microbiol Infect 12:426–432. doi:10.1111/j.1469-0691.2006.01371.x

    Google Scholar 

  213. Bruchmann S, Dotsch A, Nouri B, Chaberny IF, Haussler S (2013) Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother 57:1361–1368. doi:10.1128/AAC.01581-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schwartz T, Armant O, Bretschneider N, Hahn A, Kirchen S, Seifert M, Dotsch A (2015) Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water. Microb Biotechnol 8:116–130. doi:10.1111/1751-7915.12156

    Article  CAS  PubMed  Google Scholar 

  215. Masuda N, Gotoh N, Ohya S, Nishino T (1996) Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 40:909–913

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Gotoh N, Tsujimoto H, Tsuda M, Okamoto K, Nomura A, Wada T, Nakahashi M, Nishino T (1998) Characterization of the MexC-MexD-OprJ multidrug efflux system in ΔmexA-mexB-oprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:1938–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Masuda N, Sakagawa E, Ohya S, Gotoh N, Nishino T (2001) Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to β-lactams due to reduced expression of the AmpC β-lactamase. Antimicrob Agents Chemother 45:1284–1286. doi:10.1128/AAC.45.4.1284-1286.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wolter DJ, Hanson ND, Lister PD (2005) AmpC and OprD are not involved in the mechanism of imipenem hypersusceptibility among Pseudomonas aeruginosa isolates overexpressing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 49:4763–4766. doi:10.1128/AAC.49.11.4763-4766.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. doi:10.2165/00003495-200464020-00004

    Article  CAS  PubMed  Google Scholar 

  220. Rodriguez-Martinez JM, Poirel L, Nordmann P (2009) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:4783–4788. doi:10.1128/AAC.00574-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Terzi HA, Kulah C, Ciftci IH (2014) The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa. World J Microbiol Biotechnol 30:2681–2687. doi:10.1007/s11274-014-1692-2

    Article  CAS  PubMed  Google Scholar 

  222. Shigemura K, Osawa K, Kato A, Tokimatsu I, Arakawa S, Shirakawa T, Fujisawa M (2015) Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo) 68:568–572. doi:10.1038/ja.2015.34

    Article  CAS  Google Scholar 

  223. Reinhardt A, Kohler T, Wood P, Rohner P, Dumas JL, Ricou B, van Delden C (2007) Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother 51:1341–1350. doi:10.1128/AAC.01278-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dougherty TJ, Nayar A, Newman JV, Hopkins S, Stone GG, Johnstone M, Shapiro AB, Cronin M et al (2014) NBTI 5463 is a novel bacterial type II topoisomerase inhibitor with activity against Gram-negative bacteria and in vivo efficacy. Antimicrob Agents Chemother 58:2657–2664. doi:10.1128/AAC.02778-13

    Google Scholar 

  225. Wolter DJ, Black JA, Lister PD, Hanson ND (2009) Multiple genotypic changes in hypersusceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotype. J Antimicrob Chemother 64:294–300. doi:10.1093/jac/dkp185

    Article  CAS  PubMed  Google Scholar 

  226. Stickland HG, Davenport PW, Lilley KS, Griffin JL, Welch M (2010) Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res 9:2957–2967. doi:10.1021/pr9011415

    Article  CAS  PubMed  Google Scholar 

  227. Martinez-Ramos I, Mulet X, Moya B, Barbier M, Oliver A, Alberti S (2014) Overexpression of MexCD-OprJ reduces Pseudomonas aeruginosa virulence by increasing its susceptibility to complement-mediated killing. Antimicrob Agents Chemother 58:2426–2429. doi:10.1128/AAC.02012-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Abdel Malek SM, Badran YR (2010) Pseudomonas aeruginosa PAO1 adapted to 2-phenoxyethanol shows cross-resistance to dissimilar biocides and increased susceptibility to antibiotics. Folia Microbiol 55:588–592. doi:10.1007/s12223-010-0094-6

    Article  CAS  Google Scholar 

  229. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432. doi:10.1128/AAC.45.2.428-432.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP (2003) High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31:124–127. doi:10.1067/mic.2003.11

    Article  PubMed  Google Scholar 

  231. D’Arezzo S, Lanini S, Puro V, Ippolito G, Visca P (2012) High-level tolerance to triclosan may play a role in Pseudomonas aeruginosa antibiotic resistance in immunocompromised hosts: evidence from outbreak investigation. BMC Res Notes 5:43. doi:10.1186/1756-0500-5-43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Ochs MM, McCusker MP, Bains M, Hancock RE (1999) Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 43:1085–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Fukuda H, Hosaka M, Iyobe S, Gotoh N, Nishino T, Hirai K (1995) nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:790–792. doi:10.1128/AAC.39.3.790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rådberg G, Nilsson LE, Svensson S (1990) Development of quinolone-imipenem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin. Antimicrob Agents Chemother 34:2142–2147. doi:10.1128/AAC.34.11.2142

    Article  PubMed  PubMed Central  Google Scholar 

  235. Aubert G, Pozzetto B, Dorche G (1992) Emergence of quinolone-imipenem cross-resistance in Pseudomonas aeruginosa after fluoroquinolone therapy. J Antimicrob Chemother 29:307–312. doi:10.1093/jac/29.3.307

    Article  CAS  PubMed  Google Scholar 

  236. Bubonja-Sonje M, Matovina M, Skrobonja I, Bedenic B, Abram M (2015) Mechanisms of carbapenem resistance in multidrug-resistant clinical isolates of Pseudomonas aeruginosa from a Croatian Hospital. Microb Drug Resist 21:261–269. doi:10.1089/mdr.2014.0172

    Article  CAS  PubMed  Google Scholar 

  237. Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381. doi:10.1099/00221287-148-8-2371

    Article  CAS  PubMed  Google Scholar 

  238. Weeks JW, Nickels LM, Ntreh AT, Zgurskaya HI (2015) Non-equivalent roles of two periplasmic subunits in the function and assembly of triclosan pump TriABC from Pseudomonas aeruginosa. Mol Microbiol 98:343–356. doi:10.1111/mmi.13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Dieppois G, Ducret V, Caille O, Perron K (2012) The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS One 7: e38148. doi:10.1371/journal.pone.0038148

    Google Scholar 

  240. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Evans K, Adewoye L, Poole K (2001) MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexA-mexR intergenic region. J Bacteriol 183:807–812. doi:10.1128/JB.183.3.807-812.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lim D, Poole K, Strynadka NC (2002) Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277:29253–29259

    Article  CAS  PubMed  Google Scholar 

  243. Chen H, Hu J, Chen PR, Lan L, Li Z, Hicks LM, Dinner AR, He C (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 105:13586–13591. doi:10.1073/pnas.0803391105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen H, Yi C, Zhang J, Zhang W, Ge Z, Yang CG, He C (2010) Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Rep 11:685–690. doi:10.1038/embor.2010.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Chang W, Small DA, Toghrol F, Bentley WE (2005) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115. doi:10.1186/1471-2164-6-115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Salunkhe P, Topfer T, Buer J, Tummler B (2005) Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 187:2565–2572. doi:10.1128/JB.187.8.2565-2572.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cummins J, Reen FJ, Baysse C, Mooij MJ, O’Gara F (2009) Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 155:2826–2837. doi:10.1099/mic.0.025643-0

    Article  CAS  PubMed  Google Scholar 

  248. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864. doi:10.1038/35101627

    Article  CAS  PubMed  Google Scholar 

  249. Daigle DM, Cao L, Fraud S, Wilke MS, Pacey A, Klinoski R, Strynadka NC, Dean CR et al (2007) Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 189:5441–5451. doi:10.1128/JB.00543-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Wilke MS, Heller M, Creagh AL, Haynes CA, McIntosh LP, Poole K, Strynadka NC (2008) The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc Natl Acad Sci U S A 105:14832–14837. doi:10.1073/pnas.0805489105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ghosh S, Cremers CM, Jakob U, Love NG (2011) Chlorinated phenols control the expression of the multidrug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by interacting with NalC. Mol Microbiol 79:1547–1556. doi:10.1111/j.1365-2958.2011.07544.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Starr LM, Fruci M, Poole K (2012) Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One 7: e32684. doi:10.1371/journal.pone.0032684

    Google Scholar 

  253. Chen W, Wang D, Zhou W, Sang H, Liu X, Ge Z, Zhang J, Lan L et al (2016) Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in Pseudomonas aeruginosa. Mol Microbiol 100:749–758. doi:10.1111/mmi.13346

    Google Scholar 

  254. Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM, Woodford N (2010) Efflux pumps, OprD porin, AmpC β-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 54:2219–2224. doi:10.1128/AAC.00816-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Sánchez P, Rojo F, Martínez JL (2002) Transcriptional regulation of mexR, the repressor of Pseudomonas aeruginosa mexAB-oprM multidrug efflux pump. FEMS Microbiol Lett 207:63–68. doi:10.1111/j.1574-6968.2002.tb11029.x

    Article  PubMed  Google Scholar 

  256. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65. doi:10.1128/MMBR.05007-11

    Article  CAS  PubMed  Google Scholar 

  257. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y et al (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343. doi:10.1038/nchembio.1225

    Article  CAS  PubMed  Google Scholar 

  259. Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K (1998) Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 180:5443–5447

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N (2004) A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol 48:435–439. doi:10.1111/j.1348-0421.2004.tb03533.x

    Article  CAS  PubMed  Google Scholar 

  261. Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, Mathee K (2012) The regulatory repertoire of Pseudomonas aeruginosa AmpC β-lactamase regulator AmpR includes virulence genes. PLoS One 7: e34067. doi:10.1371/journal.pone.0034067

    Google Scholar 

  262. Sugimura M, Maseda H, Hanaki H, Nakae T (2008) Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144. doi:10.1128/aac.00511-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240. doi:10.1111/j.1365-2958.2008.06152.x

    Article  CAS  PubMed  Google Scholar 

  264. Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194:4823–4836. doi:10.1128/JB.00765-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Chambers JR, Liao J, Schurr MJ, Sauer K (2014) BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol 92:471–487. doi:10.1111/mmi.12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gupta K, Marques CN, Petrova OE, Sauer K (2013) Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol 195:4975–4987. doi:10.1128/JB.00732-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gupta K, Liao J, Petrova OE, Cherny KE, Sauer K (2014) Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol 92:488–506. doi:10.1111/mmi.12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770. doi:10.1128/AAC.45.6.1761-1770.2001

    Article  PubMed  PubMed Central  Google Scholar 

  269. Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T (2004) MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiol Lett 238:23–28. doi:10.1111/j.1574-6968.2004.tb09732.x

    CAS  PubMed  Google Scholar 

  270. Yamamoto M, Ueda A, Kudo M, Matsuo Y, Fukushima J, Nakae T, Kaneko T, Ishigatsubo Y (2009) Role of MexZ and PA5471 in transcriptional regulation of mexXY in Pseudomonas aeruginosa. Microbiology 155:3312–3321. doi:10.1099/mic.0.028993-0

    Article  CAS  PubMed  Google Scholar 

  271. Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77:440–475. doi:10.1128/MMBR.00018-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Morita Y, Sobel ML, Poole K (2006) Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 188:1847–1855. doi:10.1128/JB.188.5.1847-1855.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hay T, Fraud S, Lau CH, Gilmour C, Poole K (2013) Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One 8: e56858. doi:10.1371/journal.pone.0056858

    Google Scholar 

  274. Yano R, Nagai H, Shiba K, Yura T (1990) A mutation that enhances synthesis of σ32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J Bacteriol 172:2124–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Li K, Xu C, Jin Y, Sun Z, Liu C, Shi J, Chen G, Chen R et al (2013) SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa. mBio 4:e00419–13. doi:10.1128/mBio.00419-13

  276. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54:3372–3382. doi:10.1128/AAC.00242-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Poole K, Gilmour C, Farha MA, Mullen E, Lau CH, Brown ED (2016) Potentiation of aminoglycoside activity in Pseudomonas aeruginosa by targeting the AmgRS envelope stress-responsive two-component system. Antimicrob Agents Chemother 60:3509–3518. doi:10.1128/AAC.03069-15

    Google Scholar 

  278. McLaughlin HP, Caly DL, McCarthy Y, Ryan RP, Dow JM (2012) An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa. PLoS One 7:e42205. doi:10.1371/journal.pone.0042205

    Google Scholar 

  279. Purssell A, Fruci M, Mikalauskas A, Gilmour C, Poole K (2015) EsrC, an envelope stress-regulated repressor of the mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa. Environ Microbiol 17:186–198. doi:10.1111/1462-2920.12602

    Article  CAS  PubMed  Google Scholar 

  280. Shiba T, Ishiguro K, Takemoto N, Koibuchi H, Sugimoto K (1995) Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J Bacteriol 177:5872–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Monti MR, Morero NR, Miguel V, Argarana CE (2013) nfxB as a novel target for analysis of mutation spectra in Pseudomonas aeruginosa. PLoS One 8:e66236. doi:10.1371/journal.pone.0066236

    Google Scholar 

  282. Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Hoiby N (2009) Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491. doi:10.1128/AAC.00428-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, Brenner-Weiss G, Overhage J (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One 8: e82240. doi:10.1371/journal.pone.0082240

    Google Scholar 

  284. Nde CW, Jang HJ, Toghrol F, Bentley WE (2009) Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate. Environ Sci Technol 43:8406–8415. doi:10.1021/es9015475

    Article  CAS  PubMed  Google Scholar 

  285. Köhler T, Epp SF, Curty LK, Pechere JC (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305

    PubMed  PubMed Central  Google Scholar 

  286. Tian ZX, Mac Aogain M, O’Connor HF, Fargier E, Mooij MJ, Adams C, Wang YP, O’Gara F (2009) MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 47:237–241. doi:10.1016/j.micpath.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  287. Tian ZX, Fargier E, Mac Aogain M, Adams C, Wang YP, O’Gara F (2009) Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa. Nucleic Acids Res 37:7546–7559. doi:10.1093/nar/gkp828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. doi:10.1128/CMR.00040-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Sobel ML, Neshat S, Poole K (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253. doi:10.1128/JB.187.4.1246-1253.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514. doi:10.1128/AAC.00830-10

    Article  CAS  PubMed  Google Scholar 

  291. Jin Y, Yang H, Qiao M, Jin S (2011) MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa. J Bacteriol 193:399–410. doi:10.1128/JB.01079-10

    Article  CAS  PubMed  Google Scholar 

  292. Uwate M, Ichise YK, Shirai A, Omasa T, Nakae T, Maseda H (2013) Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol 57:263–272. doi:10.1111/1348-0421.12032

    Article  CAS  PubMed  Google Scholar 

  293. Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immunol 72:5433–5438. doi:10.1128/IAI.72.9.5433-5438.2004

    Article  CAS  Google Scholar 

  294. Richardot C, Juarez P, Jeannot K, Patry I, Plésiat P, Llanes C (2016) Amino acid substitutions account for most MexS alterations in clinical nfxC mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:2302–2310. doi:10.1128/AAC.02622-15

    Google Scholar 

  295. Vallet I, Diggle SP, Stacey RE, Camara M, Ventre I, Lory S, Lazdunski A, Williams P et al (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890. doi:10.1128/JB.186.9.2880-2890.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Castang S, McManus HR, Turner KH, Dove SL (2008) H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A 105:18947–18952. doi:10.1073/pnas.0808215105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Castang S, Dove SL (2012) Basis for the essentiality of H-NS family members in Pseudomonas aeruginosa. J Bacteriol 194:5101–5109. doi:10.1128/JB.00932-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechère JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. doi:10.1128/JB.183.18.5213-5222.2001

    Article  PubMed  PubMed Central  Google Scholar 

  299. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol 14:1968–1981. doi:10.1111/j.1462-2920.2012.02727.x

    Article  CAS  PubMed  Google Scholar 

  300. Lee J, Attila C, Cirillo SL, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2:75–90. doi:10.1111/j.1751-7915.2008.00061.x

    Article  CAS  PubMed  Google Scholar 

  301. Mushtaq S, Ge Y, Livermore DM (2004) Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 48:3086–3092. doi:10.1128/AAC.48.8.3086-3092.2004

    Google Scholar 

  302. Queenan AM, Shang W, Bush K, Flamm RK (2010) Differential selection of single-step AmpC or efflux mutants of Pseudomonas aeruginosa by using cefepime, ceftazidime, or ceftobiprole. Antimicrob Agents Chemother 54:4092–4097. doi:10.1128/AAC.00060-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G et al (2015) Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 59:1020–1029. doi:10.1128/AAC.04238-14

    Google Scholar 

  304. Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, Nakagawa A, Nakae T (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279:25939–25942. doi:10.1074/jbc.C400164200

    Article  CAS  PubMed  Google Scholar 

  305. Sennhauser G, Bukowska MA, Briand C, Grutter MG (2009) Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 389:134–145. doi:10.1016/j.jmb.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  306. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. doi:10.1038/nature12300

    Article  CAS  PubMed  Google Scholar 

  307. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W et al (2014) Structure of the AcrAB-TolC multidrug efflux pump. Nature 509:512–515. doi:10.1038/nature13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Daury L, Orange F, Taveau JC, Verchere A, Monlezun L, Gounou C, Marreddy RK, Picard M et al (2016) Tripartite assembly of RND multidrug efflux pumps. Nat Commun 7:10731. doi:10.1038/ncomms10731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Yonehara R, Yamashita E, Nakagawa A (2016) Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa. Proteins 84:759–769. doi:10.1002/prot.25022

    Google Scholar 

  310. Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:826–830. doi:10.1128/AAC.00860-06

    Google Scholar 

  311. Hong MC, Hsu DI, Bounthavong M (2013) Ceftolozane/tazobactam: a novel antipseudomonal cephalosporin and β-lactamase-inhibitor combination. Infect Drug Resist 6:215–223. doi:10.2147/IDR.S36140

    PubMed  PubMed Central  Google Scholar 

  312. Eguchi K, Ueda Y, Kanazawa K, Sunagawa M, Gotoh N (2007) The mode of action of 2-(thiazol-2-ylthio)-1β-methylcarbapenems against Pseudomonas aeruginosa: the impact of outer membrane permeability and the contribution of MexAB-OprM efflux system. J Antibiot (Tokyo) 60:129–135. doi:10.1038/ja.2007.12

    Article  CAS  Google Scholar 

  313. Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T (2008) Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2849–2854. doi:10.1128/AAC.00413-08

    Google Scholar 

  314. Koga T, Sugihara C, Kakuta M, Masuda N, Namba E, Fukuoka T (2009) Affinity of tomopenem (CS-023) for penicillin-binding proteins in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:1238–1241. doi:10.1128/AAC.01433-08

    Google Scholar 

  315. Rieg S, Huth A, Kalbacher H, Kern WV (2009) Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Agents 33:174–176. doi:10.1016/j.ijantimicag.2008.07.032

    Article  CAS  PubMed  Google Scholar 

  316. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116. doi:10.1128/AAC.45.1.105-116.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Sonnet P, Izard D, Mullie C (2012) Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. Int J Antimicrob Agents 39:77–80. doi:10.1016/j.ijantimicag.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  318. Mesaros N, Glupczynski Y, Avrain L, Caceres NE, Tulkens PM, Van Bambeke F (2007) A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 59:378–386. doi:10.1093/jac/dkl504

    Article  CAS  PubMed  Google Scholar 

  319. Yoshida K, Nakayama K, Ohtsuka M, Kuru N, Yokomizo Y, Sakamoto A, Takemura M, Hoshino K et al (2007) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 15:7087–7097. doi:10.1016/j.bmc.2007.07.039

    Article  CAS  PubMed  Google Scholar 

  320. Zuo Z, Weng J, Wang W (2016) Insights into the inhibitory mechanism of D13-9001 to the multidrug transporter AcrB through molecular dynamics simulations. J Phys Chem B 120:2145–2154. doi:10.1021/acs.jpcb.5b11942

    Article  CAS  PubMed  Google Scholar 

  321. Hirakata Y, Kondo A, Hoshino K, Yano H, Arai K, Hirotani A, Kunishima H, Yamamoto N et al (2009) Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int J Antimicrob Agents 34:343–346. doi:10.1016/j.ijantimicag.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  322. Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421. doi:10.3389/fmicb.2015.00421

    Article  PubMed  PubMed Central  Google Scholar 

  323. Kuete V, Alibert-Franco S, Eyong KO, Ngameni B, Folefoc GN, Nguemeving JR, Tangmouo JG, Fotso GW et al (2011) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents 37:156–161. doi:10.1016/j.ijantimicag.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  324. Fadli M, Chevalier J, Saad A, Mezrioui NE, Hassani L, Pagès JM (2011) Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int J Antimicrob Agents 38:325–330. doi:10.1016/j.ijantimicag.2011.05.005

    Google Scholar 

  325. Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W (2014) Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9: e101840. doi:10.1371/journal.pone.0101840

    Google Scholar 

  326. Negi N, Prakash P, Gupta ML, Mohapatra TM (2014) Possible role of curcumin as an efflux pump inhibitor in multidrug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagn Res 8:DC04–DC07. doi:10.7860/JCDR/2014/8329.4965

    PubMed  PubMed Central  Google Scholar 

  327. Whalen KE, Poulson-Ellestad KL, Deering RW, Rowley DC, Mincer TJ (2015) Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a Pseudoalteromonas sp. J Nat Prod 78:402–412. doi:10.1021/np500775e

    Article  CAS  PubMed  Google Scholar 

  328. Wu CM, Cao JL, Zheng MH, Ou Y, Zhang L, Zhu XQ, Song JX (2008) Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J Int Med Res 36:178–186

    Article  CAS  PubMed  Google Scholar 

  329. Wang H, Meng J, Jia M, Ma X, He G, Yu J, Wang R, Bai H et al (2010) oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. FEMS Immunol Med Microbiol 60:275–282. doi:10.1111/j.1574-695X.2010.00742.x

    Article  CAS  PubMed  Google Scholar 

  330. Rees VE, Bulitta JB, Nation RL, Tsuji BT, Sorgel F, Landersdorfer CB (2015) Shape does matter: short high-concentration exposure minimizes resistance emergence for fluoroquinolones in Pseudomonas aeruginosa. J Antimicrob Chemother 70:818–826. doi:10.1093/jac/dku437

    Article  CAS  PubMed  Google Scholar 

  331. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6: 26717. doi:10.1038/srep26717

  332. Sakhtah H, Koyama L, Zhang Y, Morales DK, Fields BL, Price-Whelan A, Hogan DA, Shepard K et al (2016) The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 113:E3538–3547. doi:10.1073/pnas.1600424113

    Google Scholar 

  333. Anandapadamanaban M, Pilstål R, Andresen C, Trewhella J, Moche M, Wallner B, Sunnerhagen M (2016) Mutation-induced population shift in the MexR conformational ensemble disengages DNA binding: a novel mechanism for MarR family derepression. Structure 24:1311–1321. doi:10.1016/j.str.2016.06.008

    Google Scholar 

Download references

Acknowledgments

The views expressed in this chapter do not necessarily reflect those of the authors’ affiliations, Health Canada or University of Franche-Comté. The authors thank Andrea Leclair for helpful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, XZ., Plésiat, P. (2016). Antimicrobial Drug Efflux Pumps in Pseudomonas aeruginosa . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_14

Download citation

Publish with us

Policies and ethics