Skip to main content

Antimicrobial Drug Efflux Pumps in Staphylococcus aureus

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

The highly adaptive opportunistic human pathogen, Staphylococcus aureus, contains a large number of integral membrane transport proteins important in homeostasis and pathogenesis. Included in this group are multidrug efflux pumps which play a role in antimicrobial resistance by reducing the intracellular concentration of drug compounds through active extrusion from the cell. S. aureus encodes many such drug efflux proteins, which fall into four out of the six currently recognized drug transporter families. These efflux pumps can confer host resistance against a vast number of clinically relevant antimicrobials, including macrolides, quinolones, streptogramins, and tetracyclines, as well as biocides such as biguanidines, diamidines, and quaternary ammonium compounds. The prevalence of these drug efflux determinants, either chromosomally or plasmid encoded, has been established worldwide, with clinical isolates expressing numerous multidrug transport proteins being continually identified. In addition to the characterized drug transporters, the recent surge in sequencing has also revealed a number of putative drug efflux proteins; some of these may share characteristics of known pumps, but, as seen with the recent addition of the proteobacterial antimicrobial compound efflux family, may represent proteins which are unique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsay JA, Holden MT (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385. doi:10.1016/j.tim.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Alibayov B, Baba-Moussa L, Sina H, Zdenkova K, Demnerova K (2014) Staphylococcus aureus mobile genetic elements. Mol Biol Rep 41:5005–5018. doi:10.1007/s11033-014-3367-3

    Article  CAS  PubMed  Google Scholar 

  3. Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673. doi:10.1016/S0140-6736(97)07324-8

    Article  CAS  PubMed  Google Scholar 

  4. Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK, Albrecht VS (2014) Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol 52:998–1002. doi:10.1128/JCM.02187-13

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bozdogan B, Esel D, Whitener C, Browne FA, Appelbaum PC (2003) Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 52:864–868. doi:10.1093/jac/dkg457

    Article  CAS  PubMed  Google Scholar 

  6. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT et al (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347. doi:10.1056/NEJMoa025025

    Article  PubMed  Google Scholar 

  7. Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92(Suppl):55S–64S. doi:10.1046/j.1365-2672.92.5s1.8.x

    Article  PubMed  Google Scholar 

  8. Pantosti A, Sanchini A, Monaco M (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2:323–334. doi:10.2217/17460913.2.3.323

    Article  CAS  PubMed  Google Scholar 

  9. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513. doi:10.1016/j.addr.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  11. Joo HS, Otto M (2015) Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochim Biophys Acta 1848:3055–3061. doi:10.1016/j.bbamem.2015.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sannasiddappa TH, Hood GA, Hanson KJ, Costabile A, Gibson GR, Clarke SR (2015) Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions. Infect Immun 83:2350–2357. doi:10.1128/IAI.00238-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hassan KA, Skurray RA, Brown MH (2007) Active export proteins mediating drug resistance in staphylococci. J Mol Microbiol Biotechnol 12:180–196. doi:10.1159/000099640

    Article  CAS  PubMed  Google Scholar 

  14. Schindler BD, Frempong-Manso E, DeMarco CE, Kosmidis C, Matta V, Seo SM, Kaatz GW (2015) Analyses of multidrug efflux pump-like proteins encoded on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 59:747–748. doi:10.1128/AAC.04678-14

    Article  PubMed  CAS  Google Scholar 

  15. Cozzetto D, Tramontano A (2008) Advances and pitfalls in protein structure prediction. Curr Protein Peptide Sci 9:567–577. doi:10.2174/138920308786733958

    Article  CAS  Google Scholar 

  16. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159. doi:10.1007/978-1-60327-058-8_8

    Article  CAS  PubMed  Google Scholar 

  17. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–395. doi:10.1046/j.1365-2958.1999.01162.x

    Article  CAS  PubMed  Google Scholar 

  19. Collu F, Cascella M (2013) Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem 13:3165–3183. doi:10.2174/15680266113136660224

    Article  CAS  PubMed  Google Scholar 

  20. Hassan KA, Jackson SM, Penesyan A, Patching SG, Tetu SG, Eijkelkamp BA, Brown MH, Henderson PJ et al (2013) Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 110:20254–20259. doi:10.1073/pnas.1317052110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6:e01982–14. doi:10.1128/mBio.01982-14

  22. Schrader-Fischer G, Berger-Bachi B (2001) The AbcA transporter of Staphylococcus aureus affects cell autolysis. Antimicrob Agents Chemother 45:407–412. doi:10.1128/AAC.45.2.407-412.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Truong-Bolduc QC, Hooper DC (2007) The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and β-lactams in Staphylococcus aureus. J Bacteriol 189:2996–3005. doi:10.1128/JB.01819-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villet RA, Truong-Bolduc QC, Wang Y, Estabrooks Z, Medeiros H, Hooper DC (2014) Regulation of expression of abcA and its response to environmental conditions. J Bacteriol 196:1532–1539. doi:10.1128/JB.01406-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ross JI, Eady EA, Cove JH, Baumberg S (1996) Minimal functional system required for expression of erythromycin resistance by msrA in Staphylococcus aureus RN4220. Gene 183:143–148. doi:10.1016/S0378-1119(96)00541-0

    Article  PubMed  Google Scholar 

  26. Ross JI, Eady EA, Cove JH, Baumberg S (1995) Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 153:93–98. doi:10.1016/0378-1119(94)00833-E

    Article  CAS  PubMed  Google Scholar 

  27. Reynolds E, Cove JH (2005) Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus. J Antimicrob Chemother 55:260–264. doi:10.1093/jac/dkh541

    Article  CAS  PubMed  Google Scholar 

  28. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. doi:10.1038/nature05155

    Article  CAS  PubMed  Google Scholar 

  29. Velamakanni S, Yao Y, Gutmann DA, van Veen HW (2008) Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry 47:9300–9308. doi:10.1021/bi8006737

    Google Scholar 

  30. Chesneau O, Ligeret H, Hosan-Aghaie N, Morvan A, Dassa E (2005) Molecular analysis of resistance to streptogramin A compounds conferred by the Vga proteins of staphylococci. Antimicrob Agents Chemother 49:973–980. doi:10.1128/AAC.49.3.973-980.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ (2008) Genetic characterization of Vga ABC proteins conferring reduced susceptibility to pleuromutilins in Staphylococcus aureus. Antimicrob Agents Chemother 52:4507–4509. doi:10.1128/AAC.00915-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allignet J, Loncle V, el Sohl N (1992) Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like antibiotics. Gene 117:45–51. doi:10.1016/0378-1119(92)90488-B

    Article  CAS  PubMed  Google Scholar 

  33. Kadlec K, Schwarz S (2009) Novel ABC transporter gene, vga(C), located on a multiresistance plasmid from a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 53:3589–3591. doi:10.1128/AAC.00570-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kehrenberg C, Schwarz S (2006) Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50:1156–1163. doi:10.1128/AAC.50.4.1156-1163.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF (2010) LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 54:5406–5412. doi:10.1128/AAC.00580-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang J, O'Toole PW, Shen W, Amrine-Madsen H, Jiang X, Lobo N, Palmer LM, Voelker L et al (2004) Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 48:909–917. doi:10.1128/AAC.48.3.909-917.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamada Y, Shiota S, Mizushima T, Kuroda T, Tsuchiya T (2006) Functional gene cloning and characterization of MdeA, a multidrug efflux pump from Staphylococcus aureus. Biol Pharm Bull 29:801–804. doi:10.1248/bpb.29.801

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M (1990) Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 172:6942–6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neyfakh AA, Borsch CM, Kaatz GW (1993) Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129. doi:10.1128/AAC.37.1.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaatz GW, Seo SM, Ruble CA (1993) Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 37:1086–1094. doi:10.1128/AAC.37.5.1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaatz GW, Thyagarajan RV, Seo SM (2005) Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother 49:161–169. doi:10.1128/AAC.49.1.161-169.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC (2005) MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187:2395–2405. doi:10.1128/JB.187.7.2395-2405.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Truong-Bolduc QC, Strahilevitz J, Hooper DC (2006) NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 50:1104–1107. doi:10.1128/AAC.50.3.1104-1107.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown MH, Skurray RA (2001) Staphylococcal multidrug efflux protein QacA. J Mol Microbiol Biotechnol 3:163–170

    CAS  PubMed  Google Scholar 

  45. Mitchell BA, Brown MH, Skurray RA (1998) QacA multidrug efflux pump from Staphylococcus aureus: comparative analysis of resistance to diamidines, biguanidines, and guanylhydrazones. Antimicrob Agents Chemother 42:475–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitchell BA, Paulsen IT, Brown MH, Skurray RA (1999) Bioenergetics of the staphylococcal multidrug export protein QacA. Identification of distinct binding sites for monovalent and divalent cations. J Biol Chem 274:3541–3548. doi:10.1074/jbc.274.6.3541

    Article  CAS  PubMed  Google Scholar 

  47. Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 95:259–265. doi:10.1016/0378-1097(92)90439-U

    Article  CAS  Google Scholar 

  48. Leelaporn A, Firth N, Paulsen IT, Hettiaratchi A, Skurray RA (1995) Multidrug resistance plasmid pSK108 from coagulase-negative staphylococci; relationships to Staphylococcus aureus qacC plasmids. Plasmid 34:62–67. doi:10.1006/plas.1995.1034

    Article  CAS  PubMed  Google Scholar 

  49. Yamada Y, Hideka K, Shiota S, Kuroda T, Tsuchiya T (2006) Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. Biol Pharm Bull 29:554–556. doi:10.1248/bpb.29.554

    Article  CAS  PubMed  Google Scholar 

  50. Ginn SL, Brown MH, Skurray RA (2000) The TetA(K) tetracycline/H+ antiporter from Staphylococcus aureus: mutagenesis and functional analysis of motif C. J Bacteriol 182:1492–1498. doi:10.1128/JB.182.6.1492-1498.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guay GG, Khan SA, Rothstein DM (1993) The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. Plasmid 30:163–166. doi:10.1006/plas.1993.1045

    Article  CAS  PubMed  Google Scholar 

  52. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184. doi:10.1128/AAC.48.6.2179-2184.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwarz S, Cardoso M, Wegener HC (1992) Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother 36:580–588. doi:10.1128/AAC.36.3.580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kadlec K, Schwarz S (2010) Identification of a plasmid-borne resistance gene cluster comprising the resistance genes erm(T), dfrK, and tet(L) in a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:915–918. doi:10.1128/AAC.01091-09

    Article  CAS  PubMed  Google Scholar 

  55. Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49:1857–1864. doi:10.1128/AAC.49.5.1857-1864.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871. doi:10.1128/AAC.49.5.1865-1871.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Banchs C, Poulos S, Nimjareansuk WS, Joo YE, Faham S (2014) Substrate binding to the multidrug transporter MepA. Biochim Biophys Acta 1838:2539–2546. doi:10.1016/j.bbamem.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  58. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA (1995) Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol 177:2827–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kazama H, Hamashima H, Sasatsu M, Arai T (1998) Distribution of the antiseptic-resistance gene qacEΔ1 in Gram-positive bacteria. FEMS Microbiol Lett 165:295–299. doi:10.1111/j.1574-6968.1998.tb13160.x

    Google Scholar 

  60. Paulsen IT, Littlejohn TG, Radstrom P, Sundstrom L, Skold O, Swedberg G, Skurray RA (1993) The 3′ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 37:761–768. doi:10.1128/AAC.37.4.761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bjorland J, Steinum T, Sunde M, Waage S, Heir E (2003) Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother 47:3046–3052. doi:10.1128/AAC.47.10.3046-3052.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heir E, Sundheim G, Holck AL (1999) The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86:378–388. doi:10.1046/j.1365-2672.1999.00672.x

    Article  CAS  PubMed  Google Scholar 

  63. Heir E, Sundheim G, Holck AL (1998) The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163:49–56. doi:10.1111/j.1574-6968.1998.tb13025.x

    Article  CAS  PubMed  Google Scholar 

  64. Yoshikai H, Kizaki H, Saito Y, Omae Y, Sekimizu K, Kaito C (2016) Multidrug resistance transporter AbcA secretes Staphylococcus aureus cytolytic toxins. J Infect Dis 213:295–304. doi:10.1093/infdis/jiv376

    Article  PubMed  Google Scholar 

  65. Truong-Bolduc QC, Bolduc GR, Medeiros H, Vyas JM, Wang Y, Hooper DC (2015) Role of the Tet38 efflux pump in Staphylococcus aureus internalization and survival in epithelial cells. Infect Immun 83:4362–4372. doi:10.1128/IAI.00723-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guffanti AA, Krulwich TA (1995) Tetracycline/H+ antiport and Na+/H+ antiport catalyzed by the Bacillus subtilis TetA(L) transporter expressed in Escherichia coli. J Bacteriol 177:4557–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tennent JM, Lyon BR, Gillespie MT, May JW, Skurray RA (1985) Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli. Antimicrob Agents Chemother 27:79–83. doi:10.1128/AAC.27.1.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA (1996) Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A 93:3630–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong TZ, Zhang M, O’Donoghue M, Boost M (2013) Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 162:977–979. doi:10.1016/j.vetmic.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  70. Cuaron JA, Dulal S, Song Y, Singh AK, Montelongo CE, Yu W, Nagarajan V, Jayaswal RK et al (2013) Tea tree oil-induced transcriptional alterations in Staphylococcus aureus. Phytother Res 27:390–396. doi:10.1002/ptr.4738

    Article  CAS  PubMed  Google Scholar 

  71. Quiblier C, Zinkernagel AS, Schuepbach RA, Berger-Bachi B, Senn MM (2011) Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors. BMC Microbiol 11:72. doi:10.1186/1471-2180-11-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227. doi:10.1038/nrm2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vetrivel U, Subramanian G (2014) Importance of ABC transporters in different tissues. Drug Metabol Drug Interact 29:65–66. doi:10.1515/dmdi-2014-0016

    Article  CAS  PubMed  Google Scholar 

  74. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113. doi:10.1146/annurev.cb.08.110192.000435

    Article  CAS  PubMed  Google Scholar 

  75. Chang G (2003) Multidrug resistance ABC transporters. FEBS Lett 555:102–105. doi:10.1016/S0014-5793(03)01085-8

    Article  CAS  PubMed  Google Scholar 

  76. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098. doi:10.1126/science.1071142

    Article  CAS  PubMed  Google Scholar 

  77. Linton KJ (2007) Structure and function of ABC transporters. Phys Chem Chem Phys 22:122–130. doi:10.1152/physiol.00046.2006

    CAS  Google Scholar 

  78. Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13. doi:10.1046/j.1365-2958.1998.00764.x

    Article  CAS  PubMed  Google Scholar 

  79. Jones PM, O'Mara ML, George AM (2009) ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem Sci 34:520–531. doi:10.1016/j.tibs.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  80. Korkhov VM, Mireku SA, Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490:367–372. doi:10.1038/nature11442

    Article  CAS  PubMed  Google Scholar 

  81. Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315:373–377. doi:10.1126/science.1133488

    Article  CAS  PubMed  Google Scholar 

  82. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938. doi:10.1016/j.febslet.2007.01.073

    Google Scholar 

  83. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. doi:10.1128/MMBR.00031-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Du D, van Veen HW, Murakami S, Pos KM, Luisi BF (2015) Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 33:76–91. doi:10.1016/j.sbi.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  85. George AM, Jones PM (2013) An asymmetric post-hydrolysis state of the ABC transporter ATPase dimer. PLoS One 8:e59854. doi:10.1371/journal.pone.0059854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–1035. doi:10.1016/j.febslet.2005.11.079

    Article  CAS  PubMed  Google Scholar 

  87. Reynolds ED, Cove JH (2005) Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 56:1179–1180. doi:10.1093/jac/dki378

    Article  CAS  PubMed  Google Scholar 

  88. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4:1207–1214. doi:10.1111/j.1365-2958.1990.tb00696.x

    Article  CAS  PubMed  Google Scholar 

  89. Reynolds E, Ross JI, Cove JH (2003) Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int J Antimicrob Agents 22:228–236. doi:10.1016/S0924-8579(03)00218-8

    Google Scholar 

  90. Beck A, Aanismaa P, Li-Blatter X, Dawson R, Locher K, Seelig A (2013) Sav 1866 from Staphylococcus aureus and P-glycoprotein: similarities and differences in ATPase activity assessed with detergents as allocrites. Biochemistry 52:3297–3309. doi:10.1021/bi400203d

    Google Scholar 

  91. Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733. doi:10.1016/j.sbi.2008.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–245. doi:10.1098/rstb.2008.0125

    Article  CAS  PubMed  Google Scholar 

  93. Higgins CF (2001) ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 152:205–210. doi:10.1016/S0923-2508(01)01193-7

    Article  CAS  PubMed  Google Scholar 

  94. ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435. doi:10.1085/jgp.201411164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305. doi:10.1146/annurev.micro.61.080706.093329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Madej MG, Dang S, Yan N, Kaback HR (2013) Evolutionary mix-and-match with MFS transporters. Proc Natl Acad Sci U S A 110:5870–5874. doi:10.1073/pnas.1303538110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS et al (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    CAS  PubMed  Google Scholar 

  98. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035. doi:10.1111/j.1742-4658.2012.08588.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186. doi:10.1093/nar/gkj001

    Article  CAS  PubMed  Google Scholar 

  100. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159. doi:10.1016/j.tibs.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  101. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Saier MH Jr (2003) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156. doi:10.1046/j.1365-2958.2003.03499.x

    Article  CAS  PubMed  Google Scholar 

  103. Varela MF, Sansom CE, Griffith JK (1995) Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol Membr Biol 12:313–319

    Article  CAS  PubMed  Google Scholar 

  104. Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, Feng W, Kang X et al (2013) Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci U S A 110:14664–14669. doi:10.1073/pnas.1308127110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744. doi:10.1126/science.1125629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heng J, Zhao Y, Liu M, Liu Y, Fan J, Wang X, Zhao Y, Zhang XC (2015) Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res 25:1060–1073. doi:10.1038/cr.2015.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615. doi:10.1126/science.1088196

    Article  CAS  PubMed  Google Scholar 

  108. Guan L, Mirza O, Verner G, Iwata S, Kaback HR (2007) Structural determination of wild-type lactose permease. Proc Natl Acad Sci U S A 104:15294–15298. doi:10.1073/pnas.0707688104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620. doi:10.1126/science.1087619

    Article  CAS  PubMed  Google Scholar 

  110. Karpowich NK, Wang DN (2008) Symmetric transporters for asymmetric transport. Science 321:781–782. doi:10.1126/science.1161495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang YW, Hu RM, Chu FY, Lin HR, Yang TC (2013) Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J Antimicrob Chemother 68:2498–2505. doi:10.1093/jac/dkt250

    Article  CAS  PubMed  Google Scholar 

  112. Ubukata K, Itoh-Yamashita N, Konno M (1989) Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 33:1535–1539. doi:10.1128/JB.01819-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu JL, Grinius L, Hooper DC (2002) NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J Bacteriol 184:1370–1377. doi:10.1128/JB.184.5.1370-1377.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Truong-Bolduc QC, Bolduc GR, Okumura R, Celino B, Bevis J, Liao CH, Hooper DC (2011) Implication of the NorB efflux pump in the adaptation of Staphylococcus aureus to growth at acid pH and in resistance to moxifloxacin. Antimicrob Agents Chemother 55:3214–3219. doi:10.1128/AAC.00289-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ding Y, Onodera Y, Lee JC, Hooper DC (2008) NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 190:7123–7129. doi:10.1128/jb.00655-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Truong-Bolduc QC, Zhang X, Hooper DC (2003) Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J Bacteriol 185:3127–3138. doi:10.1128/JB.185.10.3127-3138.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Truong-Bolduc QC, Villet RA, Estabrooks ZA, Hooper DC (2014) Native efflux pumps contribute resistance to antimicrobials of skin and the ability of Staphylococcus aureus to colonize skin. J Infect Dis 209:1485–1493. doi:10.1093/infdis/jit660

    Article  CAS  PubMed  Google Scholar 

  118. Costa SS, Viveiros M, Amaral L, Couto I (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7:59–71. doi:10.2174/1874285801307010059

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hassan KA, Souhani T, Skurray RA, Brown MH (2008) Analysis of tryptophan residues in the staphylococcal multidrug transporter QacA reveals long-distance functional associations of residues on opposite sides of the membrane. J Bacteriol 190:2441–2449. doi:10.1128/JB.01864-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu Z, O’Rourke BA, Skurray RA, Brown MH (2006) Role of transmembrane segment 10 in efflux mediated by the staphylococcal multidrug transport protein QacA. J Biol Chem 281:792–799. doi:10.1074/jbc.M508676200

    Article  CAS  PubMed  Google Scholar 

  121. Cervinkova D, Babak V, Marosevic D, Kubikova I, Jaglic Z (2013) The role of the qacA gene in mediating resistance to quaternary ammonium compounds. Microb Drug Resist 19:160–167. doi:10.1089/mdr.2012.0154

    Article  CAS  PubMed  Google Scholar 

  122. Shi GS, Boost M, Cho P (2015) Prevalence of antiseptic-resistance genes in staphylococci isolated from orthokeratology lens and spectacle wearers in Hong Kong. Invest Ophthalmol Vis Sci 56:3069–3074. doi:10.1167/iovs.15-16550

    Article  CAS  PubMed  Google Scholar 

  123. Hassan KA, Skurray RA, Brown MH (2007) Transmembrane helix 12 of the Staphylococcus aureus multidrug transporter QacA lines the bivalent cationic drug binding pocket. J Bacteriol 189:9131–9134. doi:10.1128/JB.01492-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hassan KA, Xu Z, Watkins RE, Brennan RG, Skurray RA, Brown MH (2009) Optimized production and analysis of the staphylococcal multidrug efflux protein QacA. Protein Expr Purif 64:118–124. doi:10.1016/j.pep.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  125. Paulsen IT, Brown MH, Skurray RA (1998) Characterization of the earliest known Staphylococcus aureus plasmid encoding a multidrug efflux system. J Bacteriol 180:3477–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fluman N, Adler J, Rotenberg SA, Brown MH, Bibi E (2014) Export of a single drug molecule in two transport cycles by a multidrug efflux pump. Nat Commun 5:4615. doi:10.1038/ncomms5615

    Article  CAS  PubMed  Google Scholar 

  127. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185:1101–1106. doi:10.1128/JB.185.3.1101-1106.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Long F, Rouquette-Loughlin C, Shafer WM, Yu EW (2008) Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52:3052–3060. doi:10.1128/AAC.00475-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lu M, Symersky J, Radchenko M, Koide A, Guo Y, Nie R, Koide S (2013) Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 110:2099–2104. doi:10.1073/pnas.1219901110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  131. He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994. doi:10.1038/nature09408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moriyama Y, Hiasa M, Matsumoto T, Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38:1107–1118. doi:10.1080/00498250701883753

    Article  CAS  PubMed  Google Scholar 

  133. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. doi:10.2165/00003495-200464020-00004

    Article  CAS  PubMed  Google Scholar 

  134. Omote H, HiasaI M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593. doi:10.1016/j.tips.2006.09.001

    Google Scholar 

  135. Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T, Higuchi T, Katoh T, Kato HE et al (2013) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251. doi:10.1038/nature12014

    Article  CAS  PubMed  Google Scholar 

  136. Lu M, Radchenko M, Symersky J, Nie R, Guo Y (2013) Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat Struct Mol Biol 20:1310–1317. doi:10.1038/nsmb.2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schindler BD, Patel D, Seo SM, Kaatz GW (2013) Mutagenesis and modeling to predict structural and functional characteristics of the Staphylococcus aureus MepA multidrug efflux pump. J Bacteriol 195:523–533. doi:10.1128/JB.01679-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–1175. doi:10.1111/j.1365-2958.1996.tb02462.x

    Article  CAS  PubMed  Google Scholar 

  139. Bay DC, Rommens KL, Turner RJ (2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778:1814–1838. doi:10.1016/j.bbamem.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  140. Bay DC, Turner RJ (2009) Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 9:140. doi:10.1186/1471-2148-9-140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Grinius LL, Goldberg EB (1994) Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J Biol Chem 269:29998–30004

    CAS  PubMed  Google Scholar 

  142. Muth TR, Schuldiner S (2000) A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE. EMBO J 19:234–240. doi:10.1093/emboj/19.2.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yerushalmi H, Schuldiner S (2000) An essential glutamyl residue in EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 275:5264–5269. doi:10.1074/jbc.275.8.5264

    Article  CAS  PubMed  Google Scholar 

  144. Gutman N, Steiner-Mordoch S, Schuldiner S (2003) An amino acid cluster around the essential Glu-14 is part of the substrate- and proton-binding domain of EmrE, a multidrug transporter from Escherichia coli. J Biol Chem 278:16082–16087. doi:10.1074/jbc.M213120200

    Article  CAS  PubMed  Google Scholar 

  145. Korkhov VM, Tate CG (2008) Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE. J Mol Biol 377:1094–1103. doi:10.1016/j.jmb.2008.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schuldiner S (2009) EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 1794:748–762. doi:10.1016/j.bbapap.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  147. Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG (2003) Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J 22:6175–6181. doi:10.1093/emboj/cdg611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104:18999–19004. doi:10.1073/pnas.0709387104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rapp M, Seppala S, Granseth E, von Heijne G (2007) Emulating membrane protein evolution by rational design. Science 315:1282–1284. doi:10.1126/science.1135406

    Article  CAS  PubMed  Google Scholar 

  151. Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E (2005) Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol 43:4363–4368. doi:10.1128/JCM.43.9.4363-4368.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Heir E, Sundheim G, Holck AL (1999) Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J Food Microbiol 48:211–219. doi:10.1016/S0168-1605(99)00044-6

    Article  CAS  PubMed  Google Scholar 

  153. Wassenaar TM, Ussery D, Nielsen LN, Ingmer H (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5:44–61. doi:10.1556/EUJMI-D-14-00038

    Article  Google Scholar 

  154. Correa JE, De Paulis A, Predari S, Sordelli DO, Jeric PE (2008) First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 62:956–960. doi:10.1093/jac/dkn327

    Article  CAS  PubMed  Google Scholar 

  155. Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101:59–66. doi:10.1016/0378-1119(91)90224-Y

    Article  CAS  PubMed  Google Scholar 

  156. Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Grinius L, Dreguniene G, Goldberg EB, Liao CH, Projan SJ (1992) A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 27:119–129. doi:10.1016/0147-619X(92)90012-Y

    Article  CAS  PubMed  Google Scholar 

  158. Sasatsu M, Shima K, Shibata Y, Kono M (1989) Nucleotide sequence of a gene that encodes resistance to ethidium bromide from a transferable plasmid in Staphylococcus aureus. Nucleic Acids Res 17:10103. doi:10.1093/nar/17.23.10103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sasatsu M, Shirai Y, Hase M, Noguchi N, Kono M, Behr H, Freney J, Arai T (1995) The origin of the antiseptic-resistance gene ebr in Staphylococcus aureus. Microbios 84:161–169

    CAS  PubMed  Google Scholar 

  160. Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270:6856–6863

    Article  CAS  PubMed  Google Scholar 

  161. Yerushalmi H, Mordoch SS, Schuldiner S (2001) A single carboxyl mutant of the multidrug transporter EmrE is fully functional. J Biol Chem 276:12744–12748. doi:10.1074/jbc.M010979200

    Article  CAS  PubMed  Google Scholar 

  162. Poget SF, Harris R, Cahill SM, Girvin ME (2010) 1H, 13C, 15N backbone NMR assignments of the Staphylococcus aureus small multidrug-resistance pump (Smr) in a functionally active conformation. Biomol NMR Assign 4:139–142. doi:10.1007/s12104-010-9228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gottesman S (1984) Bacterial regulation: global regulatory networks. Ann Rev Genet 18:415–441. doi:10.1146/annurev.ge.18.120184.002215

    Article  CAS  PubMed  Google Scholar 

  164. Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489. doi:10.1016/j.mib.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  165. Truong-Bolduc QC, Hooper DC (2010) Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus. J Bacteriol 192:2525–2534. doi:10.1128/JB.00018-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gupta RK, Luong TT, Lee CY (2015) RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA. Proc Natl Acad Sci U S A 112:14036–14041. doi:10.1073/pnas.1509251112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ingavale S, van Wamel W, Luong TT, Lee CY, Cheung AL (2005) Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect Immun 73:1423–1431. doi:10.1128/IAI.73.3.1423-1431.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY (2006) Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 188:1899–1910. doi:10.1128/JB.188.5.1899-1910.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Truong-Bolduc QC, Dunman PM, Eidem T, Hooper DC (2011) Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus. J Bacteriol 193:6207–6214. doi:10.1128/JB.05847-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA (1998) QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 273:18665–18673. doi:10.1074/jbc.273.29.18665

    Article  CAS  PubMed  Google Scholar 

  171. Brooks BE, Piro KM, Brennan RG (2007) Multidrug-binding transcription factor QacR binds the bivalent aromatic diamidines DB75 and DB359 in multiple positions. J Am Chem Soc 129:8389–8395. doi:10.1021/ja072576v

    Article  CAS  PubMed  Google Scholar 

  172. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163. doi:10.1126/science.1066020

    Article  CAS  PubMed  Google Scholar 

  173. Schumacher MA, Brennan RG (2003) Deciphering the molecular basis of multidrug recognition: crystal structures of the Staphylococcus aureus multidrug binding transcription regulator QacR. Res Microbiol 154:69–77. doi:10.1016/S0923-2508(02)00013-X

    Article  CAS  PubMed  Google Scholar 

  174. Theis T, Skurray RA, Brown MH (2007) Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microbiol Methods 70:355–362. doi:10.1016/j.mimet.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  175. Grkovic S, Hardie KM, Brown MH, Skurray RA (2003) Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 42:15226–15236. doi:10.1021/bi035447+

    Article  CAS  PubMed  Google Scholar 

  176. Murray DS, Schumacher MA, Brennan RG (2004) Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. J Biol Chem 279:14365–14371. doi:10.1074/jbc.M313870200

    Article  CAS  PubMed  Google Scholar 

  177. Schumacher MA, Miller MC, Brennan RG (2004) Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J 23:2923–2930. doi:10.1038/sj.emboj.7600288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Peters KM, Brooks BE, Schumacher MA, Skurray RA, Brennan RG, Brown MH (2011) A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity. PLoS One 6:e15974. doi:10.1371/journal.pone.0015974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kaatz GW, DeMarco CE, Seo SM (2006) MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother 50:1276–1281. doi:10.1128/AAC.50.4.1276-1281.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Luong TT, Newell SW, Lee CY (2003) Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 185:3703–3710. doi:10.1128/JB.185.13.3703-3710.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schindler BD, Seo SM, Birukou I, Brennan RG, Kaatz GW (2015) Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus. J Bacteriol 197:1104–1114. doi:10.1128/JB.02558-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Opperman TJ, Williams JD, Houseweart C, Panchal RG, Bavari S, Peet NP, Moir DT, Bowlin TL (2010) Efflux-mediated bis-indole resistance in Staphylococcus aureus reveals differential substrate specificities for MepA and MepR. Bioorg Med Chem 18:2123–2130. doi:10.1016/j.bmc.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  183. DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51:3235–3239. doi:10.1128/AAC.00430-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Birukou I, Tonthat NK, Seo SM, Schindler BD, Kaatz GW, Brennan RG (2013) The molecular mechanisms of allosteric mutations impairing MepR repressor function in multidrug-resistant strains of Staphylococcus aureus. mBio 4:e00528–13. doi:10.1128/mBio.00528-13

  185. Kumaraswami M, Schuman JT, Seo SM, Kaatz GW, Brennan RG (2009) Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA. Nucleic Acids Res 37:1211–1224. doi:10.1093/nar/gkn1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Archer GL (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181. doi:10.1086/520289

    Article  CAS  PubMed  Google Scholar 

  187. Tong SY, Holden MT, Nickerson EK, Cooper BS, Koser CU, Cori A, Jombart T, Cauchemez S et al (2015) Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res 25:111–118. doi:10.1101/gr.174730.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Conceicao T, Coelho C, de Lencastre H, Aires-de-Sousa M (2015) High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother 60:678–681. doi:10.1128/AAC.02140-15

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fraise AP (2002) Biocide abuse and antimicrobial resistance – a cause for concern? J Antimicrob Chemother 49:11–12. doi:10.1093/jac/49.1.11

    Article  CAS  PubMed  Google Scholar 

  190. Vali L, Davies SE, Lai LL, Dave J, Amyes SG (2008) Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J Antimicrob Chemother 61:524–532. doi:10.1093/jac/dkm520

    Article  CAS  PubMed  Google Scholar 

  191. Hirata T, Wakatabe R, Nielsen J, Someya Y, Fujihira E, Kimura T, Yamaguchi A (1997) A novel compound, 1,1-dimethyl-5(1-hydroxypropyl)-4,6,7-trimethylindan, is an effective inhibitor of the tet(K) gene-encoded metal-tetracycline/H+ antiporter of Staphylococcus aureus. FEBS Lett 412:337–340. doi:10.1016/S0014-5793(97)00796-5

    Article  CAS  PubMed  Google Scholar 

  192. Nelson ML, Levy SB (1999) Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 43:1719–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Gibbons S, Udo EE (2000) The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother Res 14:139–140. doi:10.1002/(SICI)1099-1573(200003)

Download references

Acknowledgments

This work was financially supported by the National Health and Medical Research Council Australia Project Grant 1002670 and a Weizmann-Australia Joint Research Program. S.A.S. is the recipient of an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa H. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sapula, S.A., Brown, M.H. (2016). Antimicrobial Drug Efflux Pumps in Staphylococcus aureus . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_7

Download citation

Publish with us

Policies and ethics