Skip to main content

The Centrifugal Microfluidic: Lab-on-a-Disc Platform

  • Chapter
  • First Online:
Microfluidics for Biologists

Abstract

Over the past decades microfluidics has proved its game-changing potential where biomedical diagnostics are performed (Manz et al. 1990; Whitesides 2006). The field of research focuses on so-called ‘Lab-on-a-Chip’ or ‘Micro Total Analysis Systems’ (μTAS) that manipulate and analyse fluid on the microscale. These devices integrate the labour intensive operations of a specific laboratory diagnostic exam onto a chip of the typical size of a credit card. The method offers significant reduction of reagent volumes, reaction times and human intervention through on-chip automation [1]. Since the adaptation of microfluidics towards the biological sciences there has been a surge of interest in the evolution of these two complimentary fields; leading to the adaptation of a huge array of bioanalytical assays onto microfluidic platforms. One of the most promising areas of research in the field of microfluidics is the development of Point of Care (POC) diagnostic devices that are simple to use, cost efficient, fast and effective. By now different modes of operation such as continuous flow, batch-wise discrete volumes and droplet-based liquid handling have been implemented. A range of integrated microfluidic platforms have been developed including passively driven systems propelled by capillary action and paper imbibition, alongside pneumatically, peristaltically, and electrokinetically actuated platforms. This chapter introduces the centrifugal microfluidic “Lab on a Disc” platform [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1(1–6):244–248. doi:10.1016/0925-4005(90)80209-I

    Article  CAS  Google Scholar 

  2. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi:10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  3. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  CAS  PubMed  Google Scholar 

  4. Ducrée J et al (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17(7):S103–S115

    Article  Google Scholar 

  5. Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Transact Series A Math Phys Eng Sci 362(1818):923–935

    Article  Google Scholar 

  6. Barathur R et al (2002) New disc-based technologies for diagnostic and research applications. Psychiatr Genet 12(4):193–206. http://www.ncbi.nlm.nih.gov/pubmed/12454524. Accessed 17 Nov 2015

    Google Scholar 

  7. Focke M et al (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10(23):3210–3212, http://pubs.rsc.org/en/content/articlehtml/2010/lc/c0lc00161a. Accessed 17 Nov 2015

    Article  CAS  PubMed  Google Scholar 

  8. Kido H, Maquieira A, Hammock BD (2000) Disc-based immunoassay microarrays. Anal Chim Acta 411(1–2):1–11

    Article  CAS  Google Scholar 

  9. Czilwik G et al (2015) Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv 5(76):61906–61912, http://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra12527h. Accessed 13 July 2015

    Article  CAS  Google Scholar 

  10. Mishra R et al (2015) Lipophilic-membrane based routing for centrifugal automation of heterogeneous immunoassays. http://doras.dcu.ie/20442/1/Mishra_et_al_LIPOPHILIC-MEMBRANE_BASED_ROUTING_FOR_CENTRIFUGAL_AUTOMATION_OF_HETEROGENEOUS_IMMUNOASSAYS_MEMS2015.pdf. Accessed 21 Aug 2015

  11. Nwankire CE et al (2013) At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics. Anal Chim Acta 781:54–62, http://www.sciencedirect.com/science/article/pii/S0003267013005138. Accessed 25 Nov 2014

    Google Scholar 

  12. Nwankire CE et al (2013b) Full integration of a liver assay panel on a centrifugal microfluidic platform. In: 2013 Transducers & eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, pp 377–379. https://www.researchgate.net/publication/236971194_Full_integration_of_a_liver_assay_panel_on_a_centrifugal_microfluidic_platform. Accessed 11 Jan 2016

  13. Chen QL et al (2012) An integrated lab-on-a-disc for automated cell-based allergen screening bioassays. Talanta 97:48–54. http://www.ncbi.nlm.nih.gov/pubmed/22841046. Accessed 23 Nov 2015

    Google Scholar 

  14. Espulgar W et al (2015) Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening. Lab Chip 15(17):3572–3580, http://pubs.rsc.org/en/content/articlehtml/2015/lc/c5lc00652j. Accessed 11 Jan 2016

    Article  CAS  PubMed  Google Scholar 

  15. Gorkin R et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773

    Article  CAS  PubMed  Google Scholar 

  16. Cox KL (2012) Immunoassay methods. Assay Guidance Manual, pp 26–28

    Google Scholar 

  17. Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397(3):991–1007

    Article  CAS  PubMed  Google Scholar 

  18. Kinahan D, Kearney S, Dimov N (2014) Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms. Lab Chip 14(13):2249–2258. http://pubs.rsc.org/en/content/articlehtml/2014/lc/c4lc00380b

    Google Scholar 

  19. Strohmeier O et al (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44(17):6187–6229, http://pubs.rsc.org/en/Content/ArticleHTML/2015/CS/C4CS00371C. Accessed 25 Jan 2016

    Article  CAS  PubMed  Google Scholar 

  20. Siegrist J et al (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9:55–63

    Article  Google Scholar 

  21. Kitsara M et al (2013) Spin coating of hydrophilic polymeric films for enhanced centrifugal flow control by serial siphoning. Microfluid Nanofluid 16(4):691–699, http://link.springer.com/10.1007/s10404-013-1266-x. Accessed 11 Jan 2016

    Article  Google Scholar 

  22. Gorkin III R et al. (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=2012436014

  23. Kinahan DJ et al (2015) Paper imbibition for timing of multi-step liquid handling protocols on event-triggered centrifugal microfluidic lab-on-a-disc platforms. RSC Adv 5(3):1818–1826, http://www.researchgate.net/publication/268989122_Paper_Imbibition_for_Timing_of_Multi-Step_Liquid_Handling_Protocols_on_Event-Triggered_Centrifugal_Microfluidic_Lab-on-a-Disc_Platforms. Accessed 28 May 2015

    Google Scholar 

  24. Park J-M et al (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7(5):557–564

    Article  CAS  PubMed  Google Scholar 

  25. Clime L et al (2015) Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15(11):2400–2411. http://pubs.rsc.org/en/Content/ArticleHTML/2015/LC/C4LC01490A. Accessed 25 Jan 2016

    Google Scholar 

  26. Grumann M et al (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76(2):025101. http://scitation.aip.org/content/aip/journal/rsi/76/2/10.1063/1.1834703. Accessed 6 Jan 2016

    Google Scholar 

  27. Godino N et al (2013) Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab Chip 13(4):685–694. http://www.ncbi.nlm.nih.gov/pubmed/23250328. Accessed 6 Jan 2016

    Google Scholar 

  28. Madou M et al (2006) Lab on a CD. Annu Rev Biomedical Eng 8:601–628

    Article  CAS  Google Scholar 

  29. Burger R, Ducrée J (2012) Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Rev Mol Diagn 12(4):407–421. doi:10.1586/erm.12.28

    Article  CAS  PubMed  Google Scholar 

  30. Ducrée J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17(7):S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  31. Gorkin R III, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902. doi:10.1039/c2lc20973j

    Article  CAS  PubMed  Google Scholar 

  32. Nwankire CE, Czugala M, Burger R, Fraser KJ, O׳Connell TM, Glennon T, Onwuliri BE, Nduaguibe IE, Diamond D, Ducrée J (2014) A portable centrifugal analyser for liver function screening. Biosens Bioelectron 56:352–358. doi:10.1016/j.bios.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  33. Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9(1):55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  34. Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44(17):6187–6229. doi:10.1039/C4CS00371C

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Kinahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Henderson, B., Kinahan, D.J., Ducrée, J. (2016). The Centrifugal Microfluidic: Lab-on-a-Disc Platform. In: Dixit, C., Kaushik, A. (eds) Microfluidics for Biologists. Springer, Cham. https://doi.org/10.1007/978-3-319-40036-5_5

Download citation

Publish with us

Policies and ethics