Skip to main content

Argumentation Framework Based on Evidence Theory

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In many fields of automated information processing it becomes crucial to consider imprecise, uncertain or inconsistent pieces of information. Therefore, integrating uncertainty factors in argumentation theory is of paramount importance. Recently, several argumentation based approaches have emerged to model uncertain data with probabilities. In this paper, we propose a new argumentation system called evidential argumentation framework that takes into account imprecision and uncertainty modeled by means of evidence theory. Indeed, evidence theory brings new semantics since arguments represent expert opinions with several weighted alternatives. Then, the evidential argumentation framework is studied in the light of both Smets and Demspter-Shafer interpretations of evidence theory. For each interpretation, we generalize Dung’s standard semantics with illustrative examples. We also investigate several preference criteria for pairwise comparison of extensions in order to select the ones that represent potential solutions to a given decision making problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A certain bba expresses the total certainty. It is defined as follows: \(m(A)=1\) and \(m(B)=0\) for all \(B \ne A\) and \(B\subseteq \varTheta \), where A is a singleton event of \(\varTheta \).

  2. 2.

    Let \(x_1, x_2, x^{'}_1, x^{'}_2\) be four alternatives. Then \((x_1, x_2) \ge _{pareto} (x^{'}_1, x^{'}_2)\) iff \(\forall i \in [1, 2]\), \(x_i \ge x^{'}_i\) and \(\exists ~ j\), such that \(x_j > x^{'}_j\).

References

  1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. (Spec. Issue Argumentation) 171(10–15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer, New York (2009)

    Google Scholar 

  3. Verheij, B., Szeider, S., Woltran, S. (eds.): Computational Models of Argument - Proceedings of COMMA 2012, Vienna, Austria, 10–12 September. Frontiers in Artificial Intelligence and Applications, vol. 245. IOS Press (2012)

    Google Scholar 

  4. Das, S.K., Fox, J., Krause, P.: A unified framework for hypothetical and practical reasoning (1): theoretical foundations. In: Proceedings of the International Conference on Formal and Applied Practical Reasoning (FAPR), pp. 58–72 (1996)

    Google Scholar 

  5. Prakken, H.: An argumentation framework in default logic. Ann. Math. Artif. Intell. 9(1–2), 93–132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal reasoning. Artif. Intell. Law 4(3–4), 331–368 (1996)

    Article  Google Scholar 

  7. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. J. Logic Comput. 8(3), 261–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferguson, G., Allen, J.F., Miller, B.W.: Trains-95: towards a mixed-initiative planning assistant. In: Proceedings of the Third International Conference on Artificial Intelligence Planning Systems (AIPS 1996), pp. 70–77 (1996)

    Google Scholar 

  9. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. J. Logic Comput. 13(3), 347–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. McBurney, P., Parsons, S., Rahwan, I.: Argumentation in Multi-Agent Systems. In: 6th International Workshop, Valencia (2012)

    Google Scholar 

  11. Schneider, J., Groza, T., Passant, A.: A review of argumentation for the social semantic web. Seman. Web 4(2), 159–218 (2013)

    Google Scholar 

  12. Cabrio, E., Cojan, J., Villata, S., Gandon, F.: Argumentation-based inconsistencies detection for question-answering over dbpedia. In: International Semantic Web Conference (2013)

    Google Scholar 

  13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theor. Pract. Logic Program. 4(1–2), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Besnard, P., Grégoire, É., Piette, C., Raddaoui, B.: Mus-based generation of arguments and counter-arguments. In: Proceedings of the 11th IEEE International Conference on Information Reuse and Integration (IRI 2010), pp. 239–244 (2010)

    Google Scholar 

  17. Besnard, P., Grégoire, É., Raddaoui, B.: A conditional logic-based argumentation framework. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 44–56. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J. Approximate Reasoning 55(2), 607–638 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approximate Reasoning 54(1), 47–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hadoux, E., Beynier, A., Maudet, N., Weng, P., Hunter, A.: Optimization of probabilistic argumentation with markov decision models. In: Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 2004–2010 (2015)

    Google Scholar 

  21. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dempster, A.: Upper and lower probabilities induced by multivalued mapping. AMS-38 (1967)

    Google Scholar 

  23. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  24. Gärdenfors, P.: Probabilistic reasoning and evidentiary value. In: Evidentiary Value: Philosophical, Judicial, and Psychological Aspects of a Theory: Essays Dedicated to Sören Halldén on His Sixtieth Birthday. C.W.K. Gleerups (1983)

    Google Scholar 

  25. Hunter, A., Thimm, M.: Probabilistic argumentation with incomplete information. In: European Conference on Artificial Intelligence, pp. 1033–1034 (2014)

    Google Scholar 

  26. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001, pp. 421–430 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Samet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Samet, A., Raddaoui, B., Dao, TT., Hadjali, A. (2016). Argumentation Framework Based on Evidence Theory. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40581-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40580-3

  • Online ISBN: 978-3-319-40581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics