Skip to main content

Preclincial Models for Studying Breast Cancer

  • Chapter
  • First Online:
The Pathobiology of Breast Cancer
  • 1050 Accesses

Abstract

Although the use of cell lines in tissue culture is a widely accepted method for testing drugs [1, 2], it has been observed that not all the data obtained in the in vitro system are translational to the human situation. Therefore, the study in animals is extremely important in all the preclinical studies. As an example the data presented in this chapter summarizes data obtained using xenotransplantation model of breast cancer in which the final malignant phenotype of tumorigenesis has been tested. Tumorigenesis in heterologous hhots is a reliable marker to determine that the transformation of human breast epithelial cells (HBEC) treated in vitro with different carcinogenic agents are really transforming one. For this purpose we will describe different examples on how to use the model of xenotransplantation to verify the malignancy of cell lines, or for detecting the transforming abilities, of oncogenes, chemical carcinogens or hormones. We will also describe the metastatic model most often used in breast cancer research and finally we will describe the development of a unique preclinical model for the triple negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russo J, Russo IH (2014) Methodological approaches to breast cancer research. Springer, New York

    Book  Google Scholar 

  2. Baselga J, Norton L, Albanell J, Mee Kim Y, Mendelsohn J (1998) Recombinant humanized anti-HER2 antibody (Herceptin™) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58:2825–2831

    CAS  PubMed  Google Scholar 

  3. Sanford KK (1974) Biologic manifestation of oncogenesis in vitro: a critique. J Natl Cancer Inst 53:1481–1485

    CAS  PubMed  Google Scholar 

  4. Giovanella BC, Stehlin JS, Williams LJ Jr (1972) Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 48:1531–1533

    CAS  PubMed  Google Scholar 

  5. Giovanella BC, Stehlin JS (1973) Heterotransplantation of human malignant tumors in “nude” thymusless mice. I. Breeding and maintenance of “nude” mice. J Natl Cancer Inst 51:615–619

    CAS  PubMed  Google Scholar 

  6. Giovanella BC, Stehlin JS, Williams LJ Jr (1974) Heterotransplantation of human malignant tumors in “nude” thymusless mice. II. Malignant tumors induced by injection of cell cultures derived from human solid tumors. J Natl Cancer Inst 52:921–930

    CAS  PubMed  Google Scholar 

  7. Povlsen CO, Fialkow PJ, Klein E (1973) Growth and antigenic properties of a biopsy-derived Burkitt’s lymphoma in thymusless (nude) mice. Int J Cancer 11:30–39

    Article  CAS  PubMed  Google Scholar 

  8. Russo J, Soule HD, McGrath C, Rich MA (1976) Re-expression of the original tumor pattern by a human breast carcinoma cell line (MCF-7) in sponge cultures. J Natl Cancer Inst 56:279–282

    CAS  PubMed  Google Scholar 

  9. DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:350–359

    Google Scholar 

  10. Russo J, Russo IH (2004) Biological and molecular basis of breast cancer. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  11. Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumor to “nude” mice. Acta Pathol Microbiol Scand 77:758–760

    Article  CAS  PubMed  Google Scholar 

  12. Greene HSN (1952) The significance of the heterologous transplantability of human cancer. Cancer 5:24–44

    Article  CAS  PubMed  Google Scholar 

  13. Russo J, McGrath CM (1975) Scirrhous carcinoma in the mouse: a model for human mammary carcinoma. Excerpta Medica, Amsterdam, p 488

    Google Scholar 

  14. Russo J, McGrath CM, Russo IH, Rich MA (1976) Tumoral growth of a human breast cancer cell line (MCF-7) in athymic mice. In: Nieburgs HE (ed) III Int. Symp. on detection and prevention of cancer, New York, pp 617–626

    Google Scholar 

  15. Shafie SM, Giartham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic mice. J Natl Cancer Inst 67:51–56

    CAS  PubMed  Google Scholar 

  16. Ura H, Bonfil RD, Reich R et al (1989) Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res 49:4615–4621

    CAS  PubMed  Google Scholar 

  17. Smith HS, Wolman SR, Hackett AJ (1984) The biology of breast cancer at the cellular level. Biochim Biophys Acta 738:103–123

    CAS  PubMed  Google Scholar 

  18. Cooper CS, Blair DG, Oskarsson MK, Tainsky MA, Eader LA, Vande Woude GF (1984) Characterization of human transforming genes from chemically transformed teratocarcinoma, and pancreatic carcinoma cell lines. Cancer Res 44:1–10

    CAS  PubMed  Google Scholar 

  19. Strange R, Aguilar-Cordova E, Young UT, Billey HT, Dandekar S, Cardiff R (1989) Harvey-ras mediated neoplastic development in the mouse mammary gland. Oncogene 4:309–315

    CAS  PubMed  Google Scholar 

  20. Ozzello L (1971) Ultrastructure of the human mammary gland. In: Summers SC (ed) Pathology annual. Appleton, New York., pp 1–59

    Google Scholar 

  21. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously irmno human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    CAS  PubMed  Google Scholar 

  22. Stampfer MR, Bartley JC (1984) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci U S A 82:2394–2398

    Article  Google Scholar 

  23. Zhang PL, Calaf G, Russo J (1992) Point mutation in codons 12 and 61 of the c-Ha-ras gene in carcinogen-treated human breast epithelial cells (HBEC). Proc Am Assoc Cancer Res 33:669a

    Google Scholar 

  24. Abarca-Quinones J, Calaf G, Estrada S, Barnabas-Sohi N, Zhang PL, Garcia M, Russo J (1992) Phenotypic progression of human breast epithelial cells HBEC transformed with chemical carcinogen. Proc Am Assoc Cancer Res 33:670a

    Google Scholar 

  25. Calaf G, Russo J (1992) Emergence of progressive neoplastic phenotypes of human breast epithetial (HBEC) treated with chemical carcinogens in vitro. Proc Am Assoc Cancer Res 33:1141a

    Google Scholar 

  26. Rochlitz CF, Scott GK, Dodson JM, Liu E, Dollbaum CH, Smith HS, Benz CH (1989) Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360

    CAS  PubMed  Google Scholar 

  27. Russo J, Fernandez SV, Russo PA et al (2006) 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 20:1622–1634

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Fernandez S, Goodwin S, Russo PA, Russo IH, Sutter T, Russo J (2007) Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17beta-estradiol. Cancer Res 67:11147–11157

    Article  CAS  PubMed  Google Scholar 

  29. Zelmer A, Ward TH (2013) Noninvasive fluorescence imaging of small animals. J Microsc. doi:10.1111/jmi.12063

    PubMed  Google Scholar 

  30. Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N (2013) IQGAP1 suppresses TbetaRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 123(3):1138–1156. doi:10.1172/JCI63836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH, Negrin RS, Contag CH (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136

    Article  CAS  PubMed  Google Scholar 

  32. Vines DC, Green DE, Kudo G, Keller H (2011) Evaluation of mouse tail-vein injections both qualitatively and quantitatively on small-animal PET tail scans. J Nucl Med Technol 39(4):264–270. doi:10.2967/jnmt.111.090951

    Article  PubMed  Google Scholar 

  33. Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES (1998) Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 19:1455–1462

    CAS  PubMed  Google Scholar 

  34. Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of β-glucuronidase-deficient mice. J Virol 77:7034–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allen RM, Uban KA, Atwood EM, Albeck DS, Yamamoto DJ (2007) Continuous intracerebroventricular infusion of the competitive NMDA receptor antagonist, LY235959, facilitates escalation of cocaine self-administration and increases break point for cocaine in Sprague-Dawley rats. Pharmacol Biochem Behav 88(1):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Becker JC et al (1996) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci U S A 93(7):2702–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bijian K et al (2012) Synthesis and biological activity of novel organoselenium derivatives targeting multiple kinases and capable of inhibiting cancer progression to metastases. Eur J Med Chem 48:143–152

    Article  CAS  PubMed  Google Scholar 

  38. Bugge TH et al (1997) Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90(11):4522–4531

    CAS  PubMed  Google Scholar 

  39. Gillies SD et al (1998) Antibody-IL-12 fusion proteins are effective in SCID mouse models of prostate and colon carcinoma metastases. J Immunol 160(12):6195–6203

    CAS  PubMed  Google Scholar 

  40. Louie E et al (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12(6):R94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dent R et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15):4429–4434

    Article  PubMed  Google Scholar 

  42. Metzger-Filho O et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30(15):1879–1887

    Article  CAS  PubMed  Google Scholar 

  43. Price JE et al (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50(3):717–721

    CAS  PubMed  Google Scholar 

  44. van Slooten HJ, Bonsing BA, Hiller AJ, Colbern GT, van Dierendonck JH, Cornelisse CJ, Smith HS (1995) Outgrowth of BT-474 human breast cancer cells in immune-deficient mice: a new in vivo model for hormonedependent breast cancer. Br J Cancer 72(1):22–30

    Google Scholar 

  45. Madsen MW, Briand P (1990) Relationship between tumorigenicity, in vitro invasiveness, and plasminogen activator production of human breast cell lines. Eur J Cancer 26(7):793–797

    Article  CAS  PubMed  Google Scholar 

  46. Langlois A et al (1979) Morphological and biochemical properties of a new human breast cancer cell line. Cancer Res 39(7 Part 1):2604–2613

    CAS  PubMed  Google Scholar 

  47. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289

    Article  CAS  PubMed  Google Scholar 

  48. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang D et al (2009) Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res 15(21):6639–6648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ginestier C et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Russo J et al (2006) The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci 11:151–172

    Article  CAS  PubMed  Google Scholar 

  52. Kao J et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4(7):e6146

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kocdor H et al (2009) Human chorionic gonadotropin (hCG) prevents the transformed phenotypes induced by 17 β-estradiol in human breast epithelial cells. Cell Biol Int 33(11):1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kocdor M et al (2013) Progressive increase of glucose transporter-3 (GLUT-3) expression in estrogen-induced breast carcinogenesis. Clin Transl Oncol 15(1):55–64

    Article  CAS  PubMed  Google Scholar 

  55. Tiezzi DG, Fernandez SV, Russo J (2007) Epithelial mesenchymal transition during the neoplastic transformation of human breast epithelial cells by estrogen. Int J Oncol 31(4):823–828

    CAS  PubMed  Google Scholar 

  56. Reynen K, Köckeritz U, Strasser R (2004) Metastases to the heart. Ann Oncol 15(3):375–381

    Article  CAS  PubMed  Google Scholar 

  57. Ciliberto G (2010) Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like and early progenitor-targeting drugs. Cell Cycle 9(14):2878–2887

    PubMed  Google Scholar 

  58. Grimshaw MJ et al (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10(3):R52

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morel A-P et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888

    Article  PubMed  PubMed Central  Google Scholar 

  60. Balzar M et al (2001) Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 21(7):2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan DS et al (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111(1):27–44

    Article  CAS  PubMed  Google Scholar 

  62. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grigoriadis A et al (2012) Molecular characterisation of cell line models for triple-negative breast cancers. BMC Genomics 13(1):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yunokawa M et al (2012) Efficacy of everolimus, a novel mTOR inhibitor, against basal‐like triple‐negative breast cancer cells. Cancer Sci 103(9):1665–1671

    Article  CAS  PubMed  Google Scholar 

  65. Tate CR et al (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14(3):R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed  PubMed Central  Google Scholar 

  67. Flanagan L et al (1999) SUM-159PT cells: a novel estrogen independent human breast cancer model system. Breast Cancer Res Treat 58(3):193–204

    Article  CAS  PubMed  Google Scholar 

  68. Woelfle U et al (2004) Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin Cancer Res 10(8):2670–2674

    Article  CAS  PubMed  Google Scholar 

  69. Russo J, Russo IH (2014) Techniques and methodological approaches in breast cancer research. Springer, New York

    Book  Google Scholar 

  70. Aguiar FN et al (2013) Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics 68(5):638–643

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xue C et al (2003) The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63(12):3386–3394

    CAS  PubMed  Google Scholar 

  72. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dalerba P et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  76. Lin C-W et al (2012) Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. J Biol Chem 287(47):39449–39459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schnell U, Kuipers J, Giepmans BN (2013) EpCAM proteolysis: new fragments with distinct functions? Biosci Rep 33(2):e00030. doi:10.1042/BSR20120128

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maetzel D et al (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11(2):162–171

    Article  CAS  PubMed  Google Scholar 

  79. Thampoe IJ, Ng JS, Lloyd KO (1988) Biochemical analysis of a human epithelial surface antigen: differential cell expression and processing. Arch Biochem Biophys 267(1):342–352

    Article  CAS  PubMed  Google Scholar 

  80. Keller PJ et al (2010) Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 12(5):R87

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gorges TM et al (2012) Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferber EC et al (2008) A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem 283(19):12691–12700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. David JM, Rajasekaran AK (2012) Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 72(12):2917–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Russo, J. (2016). Preclincial Models for Studying Breast Cancer. In: The Pathobiology of Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-40815-6_9

Download citation

Publish with us

Policies and ethics