Skip to main content

Introduction

  • Chapter
  • First Online:
Search and Optimization by Metaheuristics

Abstract

This chapter introduces background material on global optimization and the concept of metaheuritstics. Basic definitions of optimization, swarm intelligence, biological process, evolution versus learning, and no-free-lunch theorem are described. We hope this chapter will arouse your interest in reading the other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Namely, nondeterministic polynomial-time complete.

References

  1. Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266:1021–4.

    Article  Google Scholar 

  2. Auger A, Teytaud O. Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica. 2010;57:121–46.

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks A, Vincent J, Phalp K. Natural strategies for search. Nat Comput. 2009;8:547–70.

    Google Scholar 

  4. Barnard CJ, Sibly RM. Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav. 1981;29:543–50.

    Google Scholar 

  5. Battail G. Heredity as an encoded communication process. IEEE Trans Inf Theory. 2010;56(2):678–87.

    Google Scholar 

  6. Beni G, Wang J. Swarm intelligence in cellular robotics systems. In: Proceedings of NATO Advanced Workshop on Robots Biological Systems, Toscana, Italy, June 1989, p. 703–712.

    Google Scholar 

  7. Bishop CM. Neural networks for pattern recogonition. New York: Oxford Press; 1995.

    Google Scholar 

  8. Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems. New York: Oxford University Press; 1999.

    Google Scholar 

  9. Broom M, Koenig A, Borries C. Variation in dominance hierarchies among group-living animals: modeling stability and the likelihood of coalitions. Behav Ecol. 2009;20:844–55.

    Google Scholar 

  10. Burke EK, Hyde MR, Kendall G. Grammatical evolution of local search heuristics. IEEE Trans Evol Comput. 2012;16(3):406–17.

    Google Scholar 

  11. Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR. Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC, editors. Computational intelligence: collaboration, fusion and emergence. Berlin, Heidelberg: Springer; 2009. p. 177–201.

    Google Scholar 

  12. Cataltepe Z, Abu-Mostafa YS, Magdon-Ismail M. No free lunch for early stropping. Neural Comput. 1999;11:995–1009.

    Article  Google Scholar 

  13. Clark CW, Mangel M. Foraging and ocking strategies: information in an uncertain environment. Am Nat. 1984;123(5):626–41.

    Google Scholar 

  14. Cook SA. The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM symposium on theory of computing, Shaker Heights, OH, USA, May 1971, p. 151–158.

    Google Scholar 

  15. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and spatial sorting in animal groups. J Theoret Biol. 2002;218:1–11.

    Article  MathSciNet  Google Scholar 

  16. de Castro LN, Timmis J. Artificial immune systems: a new computational intelligence approach. Springer; 2002.

    Google Scholar 

  17. Dorigo M, Maniezzo V, Colorni A. Ant system: an autocatalytic optimizing process. Technical Report 91-016, Politecnico di Milano, Milan, Italy, 1991.

    Google Scholar 

  18. Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst, Man, Cybern Part B. 1996;26(1):29–41.

    Article  Google Scholar 

  19. Du K-L, Swamy MNS. Neural netwotks and statistical learning. London: Springer; 2014.

    Book  Google Scholar 

  20. Duenez-Guzman EA, Vose MD. No free lunch and benchmarks. Evol Comput. 2013;21(2):293–312.

    Article  Google Scholar 

  21. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International symposium on micro machine and human science, Nagoya, Japan, October 1995, p. 39–43.

    Google Scholar 

  22. Engelbrecht AP. Fundamentals of computational swarm intelligence. New Jersey: Wiley; 2005.

    Google Scholar 

  23. Fisher H, Thompson GL. Probabilistic learning combinations of local job shop scheduling rules. In: Muth JF, Thompson GL, editors. Industrial scheduling. New Jersey: Prentice Hall;1963. p. 225–251.

    Google Scholar 

  24. Fletcher R. Practical methods of optimization. New York: Wiley; 1991.

    MATH  Google Scholar 

  25. Glover F. Future paths for integer programming and links to artificial intelligence. Comput Oper Res. 1986;13:533–49.

    Google Scholar 

  26. Glover F, Laguna M, Marti R. Scatter search. In: Ghosh A, Tsutsui S, editors. Advances in evolutionary computing: theory and applications. Berlin: Springer;2003. p. 519–537.

    Google Scholar 

  27. Hinton GE, Nowlan SJ. How learning can guide evolution. Complex Syst. 1987;1:495–502.

    MATH  Google Scholar 

  28. Hirvensalo M. Quantum computing. Springer. 2004.

    Google Scholar 

  29. Hodgkin AL, Huxley AF. Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500.

    Article  Google Scholar 

  30. Holland JH. Outline for a logical theory of adaptive systems. J ACM. 1962;9(3):297–314.

    Article  MATH  Google Scholar 

  31. Hooke R, Jeeves TA. “Direct search” solution of numerical and statistical problems. J ACM. 1961;8(2):212–29.

    Google Scholar 

  32. Hopfield JJ, Tank DW. Neural computation of decisions in optimization problems. Biol Cybern. 1985;52:141–52.

    Google Scholar 

  33. Hoppe W, Lohmann W, Markl H, Ziegler H. Biophysics. New York: Springer; 1983.

    Book  Google Scholar 

  34. Igel C, Toussaint M. A no-free-lunch theorem for non-uniform distributions of target functions. J Math Model Algorithms. 2004;3(4):313–22.

    Google Scholar 

  35. Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Kayseri, Turkey. 2005.

    Google Scholar 

  36. Kasabov N. Integrative connectionist learning systems inspired by nature: current models, future trends and challenges. Natural Comput. 2009;8:199–218.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–80.

    Article  MathSciNet  MATH  Google Scholar 

  38. Kleene SC. Introduction to metamathematics. Amsterdam: North Holland; 1952.

    MATH  Google Scholar 

  39. Ku KWC, Mak MW, Siu WC. Approaches to combining local and evolutionary search for training neural networks: a review and some new results. In: Ghosh A, Tsutsui S, editors. Advances in evolutionary computing: theory and applications. Berlin: Springer; 2003. p. 615–641.

    Google Scholar 

  40. Lourenco HR, Martin O, Stutzle T. Iterated local search: framework and applications. In: Handbook of metaheuristics, 2nd ed. New York: Springer. 2010.

    Google Scholar 

  41. Magdon-Ismail M. No free lunch for noise prediction. Neural Comput. 2000;12:547–64.

    Google Scholar 

  42. Martin O, Otto SW, Felten EW. Large-step Markov chains for the traveling salesman problem. Complex Syst. 1991;5:299–326.

    MathSciNet  MATH  Google Scholar 

  43. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33.

    Google Scholar 

  44. Mirjalili S, Lewis A, Mostaghim S. Confidence measure: a novel metric for robust meta-heuristic optimisation algorithms. Inf Sci. 2015;317:114–42.

    Google Scholar 

  45. Mladenovic N, Hansen P. Variable neighborhood search. Comput Oper Res. 1997;24:1097–100.

    Google Scholar 

  46. Moore M, Narayanan A. Quantum-inspired computing. Technical Report, Department of Computer Science, University of Exeter, Exeter, UK. 1995.

    Google Scholar 

  47. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.

    Google Scholar 

  48. von Neumann J. Zur Theorie der Gesellschaftsspiele. Ann Math. 1928;100:295–320.

    Article  MathSciNet  MATH  Google Scholar 

  49. Ozcan E, Bilgin B, Korkmaz EE. A comprehensive analysis of hyper-heuristics. Intell Data Anal. 2008;12(1):3–23.

    Google Scholar 

  50. Passino KM. Biomimicry of bacterial foraging for distributed optimisation and control. IEEE Control Syst Mag. 2002;22(3):52–67.

    Article  MathSciNet  Google Scholar 

  51. Paun G. Membrane computing: an introduction. Berlin: Springer; 2002.

    Book  MATH  Google Scholar 

  52. Ray T, Liew KM. Society and civilization: an optimization algorithm based on simulation of social behavior. IEEE Trans Evol Comput. 2003;7:386–96.

    Google Scholar 

  53. Reynolds RG. An introduction to cultural algorithms. In: Proceedings of the 3rd Annual conference on evolutionary programming, San Diego, CA, USA. New Jersey: World Scientific; 1994. p. 131–139

    Google Scholar 

  54. Solis FJ, Wets RJ. Minimization by random search techniques. Math Oper Res. 1981;6:19–30.

    Article  MathSciNet  MATH  Google Scholar 

  55. Stannett M. The computational status of physics: a computable formulation of quantum theory. Nat Comput. 2009;8:517–38.

    Google Scholar 

  56. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–59.

    Google Scholar 

  57. Sumper D. The principles of collective animal behaviour. Philos Trans R Soc B. 2006;36(1465):5–22.

    Article  Google Scholar 

  58. Talbi E-G. Metaheuristics: from design to implementation. Hoboken, NJ: Wiley; 2009.

    Book  MATH  Google Scholar 

  59. Turney P. Myths and legends of the Baldwin effect. In: Proceedings of the 13th international conference on machine learning, Bari, Italy, July 1996, p. 135–142.

    Google Scholar 

  60. Turney P. How to shift bias: lessons from the Baldwin effect. Evol Comput. 1997;4(3):271–95.

    Google Scholar 

  61. Voudouris C, Tsang E. Guided local search. Technical Report CSM-247, University of Essex, Colchester, UK. 1995.

    Google Scholar 

  62. Whitley D, Gordon VS, Mathias K. Lamarckian evolution, the Baldwin effect and function optimization. In: Proceedings of the 3rd Conference on parallel problem solving from nature (PPSN III), Jerusalem, Israel, October 1994. p. 6–15.

    Google Scholar 

  63. Wolpert DH, Macready WG. No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, Sante Fe, NM, USA. 1995.

    Google Scholar 

  64. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.

    Article  Google Scholar 

  65. Wolpert DH, Macready WG. Coevolutionary free lunches. IEEE Trans Evol Comput. 2005;9(6):721–35.

    Google Scholar 

  66. Yao X. Evolving artificial neural networks. Proc IEEE. 1999;87(9):1423–47.

    Google Scholar 

  67. Zhu H. No free lunch for cross validation. Neural Comput. 1996;8(7):1421–6.

    Google Scholar 

  68. Zimmermann HJ, Sebastian HJ. Intelligent system design support by fuzzy-multi-criteria decision making and/or evolutionary algorithms. In: Proceedings of IEEE international conference on fuzzy systems, Yokohama, Japan, March 1995. p. 367–374.

    Google Scholar 

  69. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput. 2003;7:117–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, KL., Swamy, M.N.S. (2016). Introduction. In: Search and Optimization by Metaheuristics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41192-7_1

Download citation

Publish with us

Policies and ethics