Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 571))

Abstract

Salient features of single-phase turbulent flow modelling are recalled first, including the closure problem, the statistical RANS models, the Lagrangian stochastic approach (one-point PDF method) together with its extension for near-wall turbulence, and the basics of Large-Eddy simulation (LES). In the second part of the chapter, two-phase dispersed turbulent flows in the Eulerian-Lagrangian approach are addressed. The issue of turbulent dispersion in RANS is succintly presented. Then, the subfilter dispersion in LES is discussed at length; functional and structural models are described, and some recent ideas about closures in terms of stochastic diffusion processes are discussed. Examples of computational results are presented for homogeneous isotropic and wall-bounded turbulence. At last, a specific modelling study of particle-laden channel flow is recalled where a low-order dynamical system with a reduced number of fluid velocity modes is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidun, C. K., & Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Allery, C., BĂ©ghein, C., WacƂawczyk, M., & Pozorski, J. (2014). Application of POD-based dynamical systems to dispersion and deposition of particles in turbulent channel flow. International Journal of Multiphase Flow, 58, 97–113.

    Article  Google Scholar 

  • Apte, S. V., Mahesh, K., Moin, P., & Oefelein, J. C. (2003). Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. International Journal of Multiphase Flow, 29, 1311–1331.

    Article  MATH  Google Scholar 

  • Armenio, V., Piomelli, U., & Fiorotto, V. (1999). Effect of the subgrid scales on particle motion. Physics of Fluids, 11, 3030–3042.

    Article  MATH  Google Scholar 

  • Aubry, N., Holmes, P., Lumley, J. L., & Stone, E. (1988). The dynamics of coherent structures in the wall region of turbulent boundary layer. Journal of Fluid Mechanics, 192, 115–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Babler, M. U., Biferale, L., Brandt, L., Feudel, U., Guseva, K., Lanotte, A.S., et al. (2015). Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. Journal of Fluid Mechanics, 766, 104–128.

    Google Scholar 

  • Balachandar, S., & Eaton, J. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133.

    Article  MATH  Google Scholar 

  • Bianco, F., Chibbaro, S., Marchioli, C., Salvetti, M. V., & Soldati, A. (2012). Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Physics of Fluids, 24, art. 045103.

    Google Scholar 

  • Brennen, C. E. (2005). Fundamentals of multiphase flow. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Burton, G. C., & Dahm, W. J. A. (2005). Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Physics of Fluids, 17, art. 075111.

    Google Scholar 

  • Casey, M., & Wintergerste, T. (Eds.). (2000). Best practice guidelines: quality and trust in industrial CFD, ERCOFTAC.

    Google Scholar 

  • Colucci, P. J., Jaberi, F. A., Givi, P., & Pope, S. B. (1998). The filtered density function for large-eddy simulation of turbulent reactive flows. Physics of Fluids, 10, 499–515.

    Article  MathSciNet  MATH  Google Scholar 

  • Crowe, C., Sommerfeld, M., & Tsuji, T. (1998). Multiphase flows with droplets and particles. New York: CRC Press.

    Google Scholar 

  • Dreeben, T. D., & Pope, S. B. (1997). Wall-function treatment in PDF methods for turbulent flows. Physics of Fluids, 9, 2692–2703.

    Article  MathSciNet  MATH  Google Scholar 

  • Dreeben, T. D., & Pope, S. B. (1998). PDF/Monte Carlo simulation of near-wall turbulent flows. Journal of Fluid Mechanics, 357, 141–166.

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, G., & Chen, B. (2015). Large Eddy Simulation by particle method coupled with Sub-Particle-Scale model and application to mixing layer flow. Applied Mathematical Modelling, 39, 3135–3149.

    Article  MathSciNet  Google Scholar 

  • Eaton, J., & Fessler, J.R. (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20, Suppl., 169–209.

    Google Scholar 

  • Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). LBM for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224, 2425.

    Article  MathSciNet  MATH  Google Scholar 

  • Fede, P., & Simonin, O. (2006). Numerical study of the subgrid turbulence effects on the statistics of heavy colliding particles. Physics of Fluids, 17, art. 045103.

    Google Scholar 

  • Fede, P., Simonin, O., Villedieu, P., & Squires, K. D. (2006). Stochastic modelling of the turbulent subgrid fluid velocity along inertial particle trajectories. In Proceedings of the Summer Program: Center for Turbulence Research, Stanford University, (pp. 247–258).

    Google Scholar 

  • Gardiner, C. W. (1990). Handbook of stochastic methods for physics, chemistry and the natural sciences (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Gatski, T. B., Hussaini, M. Y., & Lumley, J. L. (Eds.). (1996). Simulation and modeling of turbulent flows. Oxford University Press.

    Google Scholar 

  • Geurts, B. J., & Kuerten, J. G. M. (2012). Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Physics of Fluids, 24, art. 081702.

    Google Scholar 

  • Gicquel, L. Y. M., Givi, P., Jaberi, F. A., & Pope, S. B. (2002). Velocity filtered density function for large eddy simulation of turbulent flows. Physics of Fluids, 14, 1196–1213.

    Article  MathSciNet  MATH  Google Scholar 

  • Grabowski, W. W., & Wang, L.-P. (2013). Growth of cloud droplets in a turbulent environment. Annual Review of Fluid Mechanics, 45, 293–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Guha, A. (2008). Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics, 40, 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustavsson, K., & Mehlig, B. (2016). Statistical models for spatial patterns of heavy particles in turbulence. Advances in Physics, 65, 1–57.

    Google Scholar 

  • Haworth, D. C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36, 168–259.

    Article  Google Scholar 

  • Henry, C., Minier, J.-P., Mohaupt, M., Profeta, C., Pozorski, J., & TaniĂšre, A. (2014). A stochastic approach for the simulation of collisions between colloidal particles at large time steps. International Journal of Multiphase Flow, 61, 94–107.

    Article  Google Scholar 

  • Hoyas, S., & Jimenez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to \(Re_\tau =2003\). Physics of Fluids, 18, art. 011702.

    Google Scholar 

  • Jenny, P., Roekaerts, D., & Beishuizen, N. (2012). Modeling of turbulent dilute spray combustion. Progress in Energy and Combustion Science, 38, 846–887.

    Article  Google Scholar 

  • Jin, B., Potts, I., & Reeks, M. W. (2015). A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers. Physics of Fluids, 27, art. 053305.

    Google Scholar 

  • Johansson, A. V. (2002). Engineering turbulence models and their development. In Oberlack, M., & Busse, F. H. (Eds.) Theories of Turbulence. CISM Courses and Lectures (Vol. 442). Springer.

    Google Scholar 

  • Kajzer, A., Pozorski, J., & Szewc, K. (2014). Large-eddy simulations of 3D Taylor-Green vortex: Comparison of smoothed particle hydrodynamics, lattice Boltzmann and finite volume methods. Journal of Physics: Conference Series, 530, art. 012019.

    Google Scholar 

  • Karlin, S. (1966). A first course in stochastic processes. New York: Academic Press.

    Google Scholar 

  • Khan, M. A. I., Luo, X. Y., Nicolleau, F. C. G. A., Tucker, P. G., & Lo, Iacono G. (2010). Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall. International Journal for Numerical Methods in Biomedical Engineering, 26, 999–1015.

    Google Scholar 

  • Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166.

    Google Scholar 

  • Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Springer.

    Google Scholar 

  • Knorps, M., & Pozorski, J. (2015). An inhomogeneous stochastic subgrid scale model for particle dispersion in Large-Eddy Simulation. In Fröhlich, J. et al. (Eds.) Direct and Large-Eddy simulation (Vol IX, pp. 671–678). Springer.

    Google Scholar 

  • Kuerten, J. G. M. (2006). Subgrid modeling in particle-laden channel flows. Physics of Fluids, 18, art. 025108.

    Google Scholar 

  • Launder, B. E., & Sandham, N. D. (Eds.). (2002). Closure strategies for turbulent and transitional flows. Cambridge University Press.

    Google Scholar 

  • Lovecchio, S., Zonta, F., & Soldati, A. (2014). Influence of thermal stratification on the surfacing and clustering of floaters in free surface turbulence. Advances in Water Resources, 72, 22–31.

    Article  Google Scholar 

  • Lozano-Duran, A., & Jimenez, J. (2014). Effect of the computational domain on direct simulations of turbulent channels up to \(Re_\tau =4200\). Physics of Fluids, 26, art. 011702.

    Google Scholar 

  • Lundgren, T. S. (1967). Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10, 969–975.

    Article  Google Scholar 

  • Ɓuniewski, M., Kotula, P., & Pozorski, J. (2012). Large-eddy simulations of particle-laden turbulent jets. TASK Quarterly, 16, 33–51.

    Google Scholar 

  • Manceau, R. (2015). Recent progress in the development of the Elliptic Blending Reynolds-stress model. International Journal of Heat and Fluid Flow, 51, 195–220.

    Article  Google Scholar 

  • Manceau, R., & Hanjalić, K. (2002). Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14, 744–754.

    Article  MATH  Google Scholar 

  • Marchioli, C., Armenio, V., & Soldati, A. (2007). Simple and accurate scheme for fluid velocity interpolation for Eulerian-Lagrangian computation of dispersed flows in 3D curvilinear grids. Computers & Fluids, 36, 1187–1198.

    Article  MATH  Google Scholar 

  • Marchioli, C., Salvetti, M. V., & Soldati, A. (2008). Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mechanica, 201, 277–296.

    Article  MATH  Google Scholar 

  • Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.

    Article  MATH  Google Scholar 

  • Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., TaniĂšre, A., Goldensoph, G., et al. (2008). Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34, 879–893.

    Article  Google Scholar 

  • Maxey, M. R. (1987). The motion of small spherical particles in a cellular flow field. Physics of Fluids, 30, 1915–1928.

    Article  Google Scholar 

  • Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883–889.

    Article  MATH  Google Scholar 

  • Mayrhofer, A., Laurence, D., Rogers, B. D., & Violeau, D. (2015). DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics. International Journal of Heat and Fluid Flow, 51, 195–220.

    Article  MathSciNet  Google Scholar 

  • McComb, W. D. (1990). The physics of fluid turbulence. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • MichaƂek, W. R., Kuerten, J. G. M., Liew, R., Zeegers, C. H., Pozorski, J., & Geurts, B. J. (2013). A hybrid deconvolution stochastic model for LES of particle-laden flow. Physics of Fluids, 25, art. 123202.

    Google Scholar 

  • Minier, J.-P. (2015). On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Progress in Energy and Combustion Science, 50, 1–62.

    Article  Google Scholar 

  • Minier, J.-P., & Chibbaro, S., (Eds.). (2014). Stochastic methods in fluid mechanics. CISM Courses and Lectures (Vol. 548). Springer.

    Google Scholar 

  • Minier, J.-P., Chibbaro, S., & Pope, S.B. (2014). Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 26, art. 113303.

    Google Scholar 

  • Minier, J.-P., & Peirano, E. (2001). The PDF approach to turbulent polydispersed two-phase flows. Physics Reports, 352, 1–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Minier, J.-P., & Pozorski, J. (1997). Propositions for a PDF model based on fluid particle acceleration. In Hanjalić, K., & Peeters, T. W. J. (Eds.) Turbulence, Heat and Mass Transfer (Vol. 2, pp. 771–778). Delft University Press.

    Google Scholar 

  • Minier, J.-P., & Pozorski, J. (1999). Wall boundary conditions in PDF methods and application to a turbulent channel flow. Physics of Fluids, 11, 2632–2644.

    Article  MATH  Google Scholar 

  • Minier, J.-P., & Profeta, C. (2015). Kinetic and dynamic probability-density-function descriptions of disperse two-phase turbulent flows. Physical Review E, 92, art. 53020.

    Google Scholar 

  • Monchaux, R., Bourgoin, M., & Cartellier, A. (2012). Analyzing preferential concentration and clustering of inertial particles in turbulence. International Journal of Multiphase Flow, 40, 1–18.

    Article  Google Scholar 

  • Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to \(Re_\tau =590\). Physics of Fluids, 11, 943–945.

    Article  MATH  Google Scholar 

  • Peirano, E., Chibbaro, S., Pozorski, J., & Minier, J.-P. (2006). Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Progress in Energy and Combustion Science, 32, 315–371.

    Article  Google Scholar 

  • Piomelli, U., & Balaras, E. (2002). Wall-layer models for Large-Eddy Simulations. Annual Review of Fluid Mechanics, 34, 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Pope, S. B. (2000). Turbulent flows. Cambridge University Press.

    Google Scholar 

  • Pope, S. B. (2002). A stochastic Lagrangian model for acceleration in turbulent flows. Physics of Fluids, 14, 2360–2375.

    Article  MathSciNet  MATH  Google Scholar 

  • Pozorski, J. (2004). Stochastic modelling of turbulent flows. Zeszyty Naukowe IMP PAN 536/1495, GdaƄsk.

    Google Scholar 

  • Pozorski, J., & Apte, S. V. (2009). Filtered particle tracking in isotropic turbulence and stochastic modelling of subgrid-scale dispersion. International Journal of Multiphase Flow, 35, 118–128.

    Article  Google Scholar 

  • Pozorski, J., Knorps, M., & Ɓuniewski, M. (2011). Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow. Journal of Physics: Conference Series, 333, art. 012014.

    Google Scholar 

  • Pozorski, J., Knorps, M., Minier, J.-P., & Kuerten, J. G. M. (2012). Anisotropic stochastic dispersion model for LES of particle-laden turbulent flows. Engineering Turbulence Modelling and Measurements, 9. Thessaloniki, Greece, June 6–8.

    Google Scholar 

  • Pozorski, J., & Ɓuniewski, M. (2008). Analysis of SGS particle dispersion model in LES of channel flow. In Meyers, J., Geurts, B., & Sagaut, P. (Eds.), Quality and Reliability of Large-Eddy Simulations (pp. 331–342). Springer.

    Google Scholar 

  • Pozorski, J., & Minier, J.-P. (1998). On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 24, 913–945.

    Article  MATH  Google Scholar 

  • Pozorski, J., & Minier, J.-P. (1999). PDF modeling of dispersed two-phase turbulent flows. Physical Review E, 59, 855–863.

    Article  Google Scholar 

  • Pozorski, J., & Minier, J.-P. (2006). Stochastic modelling of conjugate heat transfer in near-wall turbulence. International Journal of Heat and Fluid Flow, 27, 867–877.

    Article  Google Scholar 

  • Pozorski, J., Sazhin, S., WacƂawczyk, M., Crua, C., Kennaird, D., & Heikal, M. (2002). Spray penetration in a turbulent flow. Flow Turbulence and Combustion, 68, 153–165.

    Article  MATH  Google Scholar 

  • Reeks, M. W. (1991). On a kinetic equation for the transport of particles in turbulent flows. Physics of Fluids A, 3, 446–456.

    Article  MATH  Google Scholar 

  • Reeks, M. W. (1992). On the continuum equations for dispersed particles in nonuniform flows. Physics of Fluids A, 4, 1290–1303.

    Article  MATH  Google Scholar 

  • Rosa, B., Parishani, H., Ayala, O., Wang, L.-P., & Grabowski, W. W. (2013). Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New Journal of Physics, 15, art. 045032.

    Google Scholar 

  • Rosa, B., & Pozorski, J. (2016). Analysis of subfilter effects on inertial particles in forced isotropic turbulence. 9th International Conference on Multiphase Flow. Firenze, Italy, May 22–27.

    Google Scholar 

  • Scotti, A., & Meneveau, C. (1999). A fractal interpolation model for large eddy simulation of turbulent flows. Physica D, 127, 198–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Sobczyk, K. (1991). Stochastic differential equations. Kluwer Academic Publishers.

    Google Scholar 

  • Soldati, A. (2005). Particles turbulence interactions in boundary layers. ZAMM, 85, 683–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Soldati, A., & Marchioli, C. (2009). Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 35, 827–839.

    Article  Google Scholar 

  • Squires, K. D. (2007). Point-particle methods for disperse flows. In Prosperetti, A., & Tryggvason, G. (Eds.) Computational Methods for Multiphase Flow. Cambridge: Cambridge University Press.

    Google Scholar 

  • Squires, K. D., & Eaton, J. K. (1991). Preferential concentration of particles by turbulence. Physics of Fluids A, 3, 1169–1178.

    Article  Google Scholar 

  • Subramanian, S. (2013). Lagrangian-Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39, 215–245.

    Article  Google Scholar 

  • TaniĂšre, A., Arcen, B., OesterlĂ©, B., & Pozorski, J. (2010). Study on Langevin model parameters of velocity in turbulent shear flows. Physics of Fluids, 22, art. 115101.

    Google Scholar 

  • Tenneti, S., & Subramanian, S. (2014). Particle-resolved direct numerical simulation for gas-solid flow model development. Annual Review of Fluid Mechanics, 46, 199–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Traczyk, M., & Knorps, M. (2012). Private communication.

    Google Scholar 

  • Violeau, D. (2012). Fluid mechanics and the SPH method. Oxford University Press.

    Google Scholar 

  • Voßkuhle, M., Pumir, A., LĂ©vĂȘque, E., & Wilkinson, M. (2014). Collision rate for suspensions at large Stokes numbers—comparing Navier-Stokes and synthetic turbulence. Journal of Turbulence, 16, 15–25.

    Article  Google Scholar 

  • WacƂawczyk, M., & Pozorski, J. (2002). Two-point velocity statistics and the POD analysis of the near-wall region in a turbulent channel flow. Journal of Theoretical and Applied Mechanics, 40, 895–916.

    Google Scholar 

  • WacƂawczyk, M., & Pozorski, J. (2007). Modelling of near-wall turbulence with large-eddy velocity modes. Journal of Theoretical and Applied Mechanics, 45, 705–724.

    Google Scholar 

  • WacƂawczyk, M., Pozorski, J., & Minier, J.-P. (2004). PDF computation of turbulent flows with a new near-wall model. Physics of Fluids, 16, 1410–1422.

    Article  MATH  Google Scholar 

  • WacƂawczyk, M., Pozorski, J., & Minier, J.-P. (2008). New molecular transport model for FDF/LES of turbulence with passive scalar. Flow Turbulence and Combustion, 81, 235–260.

    Article  MATH  Google Scholar 

  • Wang, L.-P., & Maxey, M. R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256, 27–68.

    Article  Google Scholar 

  • Yu, W., Vinkovic, I., & Buffat, M. (2016). Acceleration statistics of finite-size particles in turbulent channel flow in the absence of gravity. Flow Turbulence and Combustion, 96, 183–205.

    Article  Google Scholar 

  • Zamansky, R., Vinkovic, I., & Gorokhovski, M. (2013). Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochasticmodels and application. Journal of Fluid Mechanics, 721, 627–668.

    Google Scholar 

Download references

Acknowledgments

I am grateful to my colleagues and Ph.D. students for a common interest in this fascinating subject: Marta WacƂawczyk, MirosƂaw Ɓuniewski, Maria Knorps and Christophe Henry at IMP GdaƄsk, Claudine BĂ©ghein and Cyrille Allery at University of La Rochelle, Sourabh Apte at Oregon, Bogdan Rosa at IMGW Warsaw. I am most grateful to Jean-Pierre Minier (ElectricitĂ© de France R & D, Chatou) for many stimulating discussions and common research on stochastic turbulence modelling over the years. I wish to express my sincere thanks to Professor Hans Kuerten (TU Eindhoven) for common insights and the kind permission to use his DNS code. The research presented here has partly been supported by the National Science Centre (NCN, Poland) through the project 2011/03/B/ST8/05677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Pozorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Pozorski, J. (2017). Models of Turbulent Flows and Particle Dynamics. In: Minier, JP., Pozorski, J. (eds) Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. CISM International Centre for Mechanical Sciences, vol 571. Springer, Cham. https://doi.org/10.1007/978-3-319-41567-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41567-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41566-6

  • Online ISBN: 978-3-319-41567-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics