Skip to main content

Information Extraction on Weather Forecasts with Semantic Technologies

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9612))

Abstract

In this paper, we describe a natural language application which extracts information from worded weather forecasts with the aim of quantifying the accuracy of weather forecasts. Our system obtains the desired information from the weather predictions taking advantage of the structure and language conventions with the help of a specific ontology. This automatic system is used in verification tasks, it increases productivity and avoids the typical human errors and probable biases in what people may incur when performing this task manually. The proposed implementation uses a framework that allows to address different types of forecasts and meteorological variables with minimal effort. Experimental results with real data are very good, and more important, it is viable to being used in a real environment.

This research work has been supported by the CICYT project TIN2013-46238-C4-4-R, and DGA-FSE. Our gratitude to Dr. Eduardo Mena and AEMET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sid.cps.unizar.es/SEMANTICWEB/GENIE/Genie-Projects.html.

  2. 2.

    For clarity’s sake, we show the examples translated to English.

  3. 3.

    http://www.aemet.es/.

  4. 4.

    FP85 is the tag used by AEMET to indicate that this is a two-day weather forecast.

  5. 5.

    Galicia is a Spanish region.

  6. 6.

    The system returns a N/A (Not Applicable) value when there is no possibility of performing the verification process. For example, frosts: there are no observational data related to frost.

  7. 7.

    This means that if it is said in the weather prediction temperature values remain unchanged, verification values will be actually valid between 2 degrees up or down.

  8. 8.

    http://sid.cps.unizar.es/SEMANTICWEB/GENIE/Genie-Projects.html.

  9. 9.

    http://nlp.lsi.upc.edu/freeling/.

  10. 10.

    http://svmlight.joachims.org/.

References

  1. Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)

    Article  MATH  Google Scholar 

  2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Artificial Intelligence. Prentice-Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  3. Appelt, D.E., Hobbs, J.R., Israel, D., Tyson, M.: Fastus: a finite-state processor for information extraction from real-world text. In: 13th International Joint Conferences on Artificial Intelligence (IJCAI 1993), vol. 93, pp. 1172–1178 (1993)

    Google Scholar 

  4. Grishman, R.: Information extraction: techniques and challenges. In: Information Extraction a Multidisciplinary Approach to an Emerging Information Technology, pp. 10–27 (1997)

    Google Scholar 

  5. Soderland, S.: Learning information extraction rules for semi-structured and free text. Mach. Learn. 34(1–3), 233–272 (1999)

    Article  MATH  Google Scholar 

  6. Seymore, K., McCallum, A., Rosenfeld, R.: Learning hidden Markov model structure for information extraction. In: AAAI 1999 Workshop on Machine Learning for Information Extraction, pp. 37–42 (1999)

    Google Scholar 

  7. McCallum, A., Freitag, D., Pereira, F.C.: Maximum entropy Markovmodels for information extraction and segmentation. In: 27th International Conference on Machine Learning (ICML 2000), vol. 17, pp. 591–598 (2000)

    Google Scholar 

  8. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  9. Viola, P., Narasimhan, M.: Learning to extract information from semi-structured text using a discriminative context free grammar. In: 28th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 330–337 (2005)

    Google Scholar 

  10. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  11. Mika, P.: Ontologies are us: a unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S., Sriram, R.D.: Ontostep: enriching product model data using ontologies. Comput. Aided Des. 44(6), 575–590 (2012)

    Article  Google Scholar 

  13. Vogrinčič, S., Bosnić, Z.: Ontology-based multi-label classification of economic articles. Comput. Sci. Inf. Syst. 8, 101–119 (2011)

    Article  Google Scholar 

  14. Garrido, A.L., Gómez, O., Ilarri, S., Mena, E.: An experience developing a semantic annotation system in a media group. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 333–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Garrido, A.L., Buey, M.G., Ilarri, S., Mena, E.: GEO-NASS: a semantic tagging experience from geographical data on the media. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 56–69. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Kara, S., Alan, Ö., Sabuncu, O., Akpınar, S., Cicekli, N.K., Alpaslan, F.N.: An ontology-based retrieval system using semantic indexing. Inf. Syst. 37(4), 294–305 (2012)

    Article  Google Scholar 

  17. Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduction and a survey of current approaches. J. Inf. Sci. 36(3), 306–323 (2010)

    Article  Google Scholar 

  18. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: 13th International Conference on World Wide Web, pp. 462–471 (2004)

    Google Scholar 

  19. Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., Racioppa, S.: Ontology-based information extraction and integration from heterogeneous data sources. Int. J. Hum. Comput. Stud. 66(11), 759–788 (2008)

    Article  Google Scholar 

  20. Getman, A.P., Karasiuk, V.V.: A crowdsourcing approach to building a legal ontology from text. Artif. Intell. Law 22(3), 313–335 (2014)

    Article  Google Scholar 

  21. Goldberg, E., Driedger, N., Kittredge, R.: Using natural-language processing to produce weather forecasts. IEEE Expert 9(2), 45–53 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel L. Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Garrido, A.L., Buey, M.G., Muñoz, G., Casado-Rubio, JL. (2016). Information Extraction on Weather Forecasts with Semantic Technologies. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds) Natural Language Processing and Information Systems. NLDB 2016. Lecture Notes in Computer Science(), vol 9612. Springer, Cham. https://doi.org/10.1007/978-3-319-41754-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41754-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41753-0

  • Online ISBN: 978-3-319-41754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics