Skip to main content

Comparison Between Domestic Water Heating Systems Based on Either Solar Heaters or Electrical Boilers by the Life Cycle Assessment Approach

  • Conference paper
  • First Online:
Advances in Human Factors and Sustainable Infrastructure

Abstract

The construction sector is one of major consumers of energy in the world. In this paper, the domestic water heating systems was compared based on solar heaters and electrical boilers by the Life Cycle Assessment (LCA) approach. We considered both energy spent and emissions related to the production and use of these systems. The results indicate that the use of solar water heaters is a more attractive choice. Higher energy and economic savings are obtained when they are used, especially in Brazil, where occurred an expressive increase of the electrical energy costs over the past years. This option also has a shorter payback period than electrical boilers. However, it observed that the environmental impact associated with solar water systems is higher because of the flat plate collector’s production. The findings exhibited in this work can provide a useful way to help the consumer to make his decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considering 1.0 USD, for sale fee, equal to 4.0364 BRL (Brazilian currency) according to the quotation of Brazil's Central Bank of the day 01/18/2016. Further information on: http://www4.bcb.gov.br/pec/taxas/batch/taxas.asp?id=txdolar.

References

  1. International Energy Agency (IEA). Transition to Sustainable Buildings, Strategies and Opportunities to 2050. OECD/IEA, Paris (2013)

    Google Scholar 

  2. Reis, L.B., Santos, E.C.: Energia Elétrica e sustentabilidade: Aspectos tecnológicos, socioambientais e legais. Manoele, Barueri (2014)

    Google Scholar 

  3. Centro Brasileiro de informação Energética (PROCEL INFO). http://www.procelinfo.com.br

  4. Brasil, Ministério de Minas e Energia e Empresa de Pesquisa Energética. Balanço Energético Nacional. BEN 2015 – Ano Base 2014. EPE, Rio de Janeiro (2015)

    Google Scholar 

  5. Companhia Energética de Minas Gerais (CEMIG). http://www.cemig.com.br/pt-br/atendimento/Paginas/valores_de_tarifa_e_servicos.aspx

  6. Kontopoulos, E., Martinopoulos, G., Lazarou, D., et al.: An ontology-based decision support tool for optimizing domestic solar hot water system selection. J. Cleaner Prod. xxx, 1–11 (2015)

    Google Scholar 

  7. Ardente, F., Beccali, G., Cellura, M., et al.: Life cycle assessment of a solar thermal collector. Renew. Energy 30, 1031–1054 (2005)

    Article  Google Scholar 

  8. Dahlstrøma, O., Sørnesa, K., Eriksend, S.T., et al.: Life cycle assessment of a single-family residence built to either conventional-or passive house standard. Energy Build. 54, 470–479 (2012)

    Article  Google Scholar 

  9. Koroneos, C.J., Nanaki, E.A.: Life cycle environmental impact assessment of a solar water heater. J. Clean. Prod. 37, 154–161 (2012)

    Article  Google Scholar 

  10. The World Wide Fund for Nature (WWF). http://www.wwf.org.br/wwf_brasil/?50206/belo-horizonte-tenta-o-tri-no-desafio-das-cidades-da-hora-do-planeta

  11. Kolagirou, S.: Sol. Energy 83, 39–48 (2009)

    Article  Google Scholar 

  12. Free Encyclopedia of Building & Environmental Inspection, Testing, Diagnosis, Repair. http://inspectapedia.com/heat/Zone_Valve_Repairs.php

  13. Associação Brasileira de Normas Técnicas (ABNT). NBR 7198: Projeto e execução de instalações prediais de água quente. ABNT, Rio de Janeiro (1993)

    Google Scholar 

  14. Ministério do Planejamento, Orçamento e Gestão (MPOG); Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa Nacional por Amostra de Domicílios: Síntese de indicadores 2012. IBGE, Rio de Janeiro (2013)

    Google Scholar 

  15. The National Institute of Metrology, Quality and Technology (INMETRO), http://www.inmetro.gov.br/consumidor/pbe/ColetoresSolares-banho.pdf or http://www.inmetro.gov.br/consumidor/pbe/boiler.pdf

  16. Companhia Energética de Minas Gerais (CEMIG). http://www.cemig.com.br/pt-br/A_Cemig_e_o_Futuro/inovacao/Alternativas_Energeticas/Documents/Atlas_Solarimetrico_CEMIG_12_09_menor.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Diniz Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliveira, R.D., Nunes, E.H.M., de Oliveira Notório Ribeiro, J., de Mello Morado Penna, R. (2016). Comparison Between Domestic Water Heating Systems Based on Either Solar Heaters or Electrical Boilers by the Life Cycle Assessment Approach. In: Charytonowicz, J. (eds) Advances in Human Factors and Sustainable Infrastructure. Advances in Intelligent Systems and Computing, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-319-41941-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41941-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41940-4

  • Online ISBN: 978-3-319-41941-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics