Skip to main content

Monte Carlo Simulations of Focused Ion Beam Induced Processing

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Focused ion beam technologies have revolutionized the modern material research, development and production. It has offered new possibilities for materials modification and fabrication with a higher spatial resolution by using helium and neon ions. In recent years, various experimental and numerical simulation approaches have been developed and implemented to broaden the applications of focused ion beam technology. The Monte Carlo (MC) simulation approach is one of the useful techniques to study the ion-solid interactions which provides crucial quantitative information which cannot be achieved, in some cases, from the experiments. The MC approaches have a number of advantages over analytical calculations. It allows a more rigorous treatment of scattering events, energy distribution of incident ions, recoil target atoms or molecules and secondary electrons as well as their angular distributions. This chapter presents a brief introduction of a Monte Carlo simulator called EnvizION and some simulation results related to focused ion beam induced physical sputtering, Extreme Ultraviolet (EUV) mask repairs, and sputtering-limiting as well as resolution-limiting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B 268, 1818–1823 (2010)

    Google Scholar 

  2. https://www.srim.org

  3. J.P. Biersack, W. Eckstein, Appl. Phys. A 34, 73 (1984)

    Article  ADS  Google Scholar 

  4. M. Ullrich, A. Burenkov, l.H. Rysse, Nucl. Instrum. Methods B 228, 373–377 (2005)

    Google Scholar 

  5. http://Geant4.web.cern.ch/Geant4/

  6. H.B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, Nanotechnology 18, 245303 (2007)

    Article  ADS  Google Scholar 

  7. E. Platzgummer et al., Microelectron. Eng. 83, 936–9 (2006)

    Article  Google Scholar 

  8. W. Boxleitner, G. Hobler, Nucl. Instrum. Methods B 180, 125–9 (2001)

    Article  ADS  Google Scholar 

  9. P.M. Nellen, V. Callegari, J. Hoftmann, E. Platzgummer, C. Klein, Mater. Res. Soc. Symp. Proc. 960, 0960–N10-03-LL06-03 (2007)

    Google Scholar 

  10. D. Kunder, E. Baer, M. Sekowski, P. Pichler, M. Romme, Microelectron. Eng. 87, 1597–1599 (2010)

    Article  Google Scholar 

  11. W. Moller, Nucl. Instrum. Methods Phys. Res. B 322, 23–33 (2014)

    Article  ADS  Google Scholar 

  12. R. Timilsina, P.D. Rack, Nanotechnology 24, 495303 (2013)

    Article  Google Scholar 

  13. R. Timilsina, S. Tan, R.H. Livengood, P.D. Rack, Nanotechnology 24, 485704 (2014)

    Article  Google Scholar 

  14. R. Timilsina, D.A. Smith, P.D. Rack, Nanotechnology 24, 115302 (2013)

    Article  ADS  Google Scholar 

  15. R.H. Livengood, S. Tan, R. Hallstein, J. Notte, S. McVey, F.H.M.F. Rahman, Nucl. Instrum. Methods Phys. Res. A 645, 136 (2010)

    Article  ADS  Google Scholar 

  16. D.A. Smith, D.C. Joy, P.D. Rack, Nanotechnology 21, 175302 (2010)

    Article  ADS  Google Scholar 

  17. R. Ramachandra, B. Griffin, D.C. Joy, Ultramicroscopy 109, 748 (2009)

    Article  Google Scholar 

  18. J.D. Fowlkes, P.D. Rack, ACS Nano. 4, 1619 (2010)

    Article  Google Scholar 

  19. D.A. Smith, J.D. Fowlkes, P.D. Rack, Nanotechnology 19, 265308 (2007)

    Article  ADS  Google Scholar 

  20. H.M. Wu, L.A. Stern, J.H. Chen, C.H. Schwalb, M. Winhold, F. Porrati, C.M. Gonzalez, R. Timilsina, P.D. Rack, Nanotechnology 24, 175302 (2013)

    Article  ADS  Google Scholar 

  21. M. Nastasi, Cambridge Solid State Science Series (1996)

    Google Scholar 

  22. M. Nastasi, J.W. Mayer, Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, U. Littmark, Pergamon Press, New York (1985)

    Google Scholar 

  24. http://www.nist.gov/pml/data/star/

  25. S. Tanuma, T. Shiratori, T. Kimura, K. Goto, S. Ichimura, C.J. Powell, Surf. Interface Anal. 37, 833–845 (2005)

    Article  Google Scholar 

  26. M. Kotera, J. Appl. Phys. 65, 3991 (1989)

    Article  ADS  Google Scholar 

  27. W.F. van Dorp, J.D. Wnuk, J.M. Gorham, D.H. Fairbrother, T.E. Madey, C.W. Hagen, J. Appl. Phys 106, 074903 (2009)

    Article  ADS  Google Scholar 

  28. P. Chen, E. van Veldhoven, C.A. Sanford, H.W.M. Salemink, D.J. Maas, D.A. Smith, P.D. Rack, P.A.F. Alkemade, Nanotechnology 21, 455302 (2010)

    Google Scholar 

  29. E.R. Cawthron, Aust. J. Phys. 24, 859 (1971)

    Article  ADS  Google Scholar 

  30. P. Sigmund, Phys. Rev. 184, 383 (1969)

    Article  ADS  Google Scholar 

  31. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, At. Data Nucl. Data Tables 31, 1–80 (1984)

    Article  ADS  Google Scholar 

  32. Y. Yamamura, H. Tawara, At. Data Nucl. Data Tables 62, 149–253 (1996)

    Article  ADS  Google Scholar 

  33. R. Behrisch, W. Eckstein, Springer, Berlin (2007)

    Google Scholar 

  34. National Physical Laboratory. https://www.resource.npl.co.uk

  35. S.D. Tan, R.H. Livengood, P. Hack, R. Hallstein, D. Shima, J. Notte, S. McVey, J. Vac. Sci. Technol. B 29, 06F604 (2011)

    Article  Google Scholar 

  36. C.M. Gonzalez, R. Timilsina, W. Slingenbergh, J.H. Noh, M.G. Standford, B.B. Lewis, K.K. Klein, T. Liang, J.D. Fowlkes, P.D. Rack, J. Vac. Sci. Technol. B 32, 021602 (2014)

    Article  Google Scholar 

  37. C.M. Gonzalez, W. Slingenbergh, R. Timilsina, J.H. Noh, M.G. Standford, B.B. Lewis, K.K. Klein, T. Liang, J.D. Fowlkes, P.D. Rack, in SPIE Proceeding, Extreme Ultraviolet (EUV) Lithography, vol. 9048, p. 90480M

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Timilsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Timilsina, R., Rack, P.D. (2016). Monte Carlo Simulations of Focused Ion Beam Induced Processing. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_4

Download citation

Publish with us

Policies and ethics