Skip to main content

A Historical and Evolutionary Perspective on Circulating Nucleic Acids and Extracellular Vesicles: Circulating Nucleic Acids as Homeostatic Genetic Entities

  • Conference paper
  • First Online:
Circulating Nucleic Acids in Serum and Plasma – CNAPS IX

Abstract

The quantitative and qualitative differences of circulating nucleic acids (cirNAs) between healthy and diseased individuals have motivated researchers to utilize these differences in the diagnosis and prognosis of various pathologies. The position maintained here is that reviewing the rather neglected early work associated with cirNAs and extracellular vesicles (EVs) is required to fully describe the nature of cirNAs. This review consists of an empirically up-to-date schematic summary of the major events that developed and integrated the concepts of heredity, genetic information and cirNAs. This reveals a clear pattern implicating cirNA as a homeostatic entity or messenger of genetic information. The schematic summary paints a picture of how cirNAs may serve as homeostatic genetic entities that promote synchrony of both adaptation and damage in tissues and organs depending on the source of the message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anker P, Stroun M (1972) Bacterial ribonucleic acid in the frog brain after a bacterial peritoneal infection. Science 178:621–623

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types – induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E (1969) I-DNA: its packaging into I-somes and its relation to protein synthesis during differentiation. Nature 224:326–328

    Article  CAS  PubMed  Google Scholar 

  • Bendich A, Wilczok T, Borenfreund E (1965) Circulating DNA as a possible factor in oncogenesis. Science 148:374–376

    Article  CAS  PubMed  Google Scholar 

  • Benoit J, Leroy P, Vendrely R et al (1960) Section of biological and medical sciences: experiments on Pekin ducks treated with DNA from Khaki Campbell ducks. Trans NY Acad Sci 22:494–503

    Article  CAS  Google Scholar 

  • Berry G, Dedrick HM (1936) A method for changing the virus of rabbit fibroma (Shope) into that of infectious myxomatosis (Sanarelli). J Bacteriol 31:50–51

    Google Scholar 

  • Chen W, Liu X, Lu M et al (2014) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9:e95240

    Article  PubMed  PubMed Central  Google Scholar 

  • Ermakov AV, Konkova MS, Kostyuk SV et al (2011) An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells. Mutat Res Fund Mol Mech Mut 712:1–10

    Article  CAS  Google Scholar 

  • Ermakov AV, Konkova MS, Kostyuk SV et al (2013) Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev. http://dx.doi.org/10.1155/2013/649747

  • Ficq A, Pavan C (1957) Autoradiography of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Nature 180:983–984

    Article  CAS  PubMed  Google Scholar 

  • Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta Rev Cancer 1775:181–232

    Article  CAS  Google Scholar 

  • Gahan PB, Chayen J (1965) Cytoplasmic deoxyribonucleic acid. Int Rev Cytol 18:223–247

    Article  CAS  PubMed  Google Scholar 

  • Gahan PB, Stroun M (2010) The virtosome—a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 28:529–538

    Article  CAS  PubMed  Google Scholar 

  • Gahan PB, Anker P, Stroun M (2008) Metabolic DNA as the origin of spontaneously released DNA? Ann NY Acad Sci 1137:7–17

    Article  CAS  PubMed  Google Scholar 

  • Gall JG (1959) Macronuclear duplication in the ciliated protozoan euplotes. J Biophysic Biochem Cytol 5:295–308

    Article  CAS  Google Scholar 

  • García-Olmo D, Garcia-Olmo D, Ontanon J et al (1999) Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histol Histopathol 14:1159–1164

    PubMed  Google Scholar 

  • Garcia-Olmo D, Garcia-Arranz M, Clemente LV et al (2015) Method for blocking tumour growth. US Patent 20150071986A1

    Google Scholar 

  • Giese AC, Suzuki S, Jenkins RA et al (1973) Blepharisma: the biology of a light-sensitive protozoan. Stanford University Press, Stanford

    Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BK (2005) Fifty years later: I. Michael Lerner’s genetic homeostasis (1954) – a valiant attempt to integrate genes, organisms and environment. J Exp Zool (Mol Dev Evol) 304B:187–197

    Article  Google Scholar 

  • Hessvik NP, Phuyal S, Brech A et al (2012) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta Gene Regul Mech 1819:1154–1163

    Article  CAS  Google Scholar 

  • Kahlert C, Melo SA, Protopopov A et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima-de-Faria A (1962) Metabolic DNA in Tipula oleracea. Chromosoma 13:47–59

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2011) Inheritance of acquired characters in animals: a historical overview, further evidence and mechanistic explanations. Ital J Zool 78:410–417

    Article  Google Scholar 

  • Mandel P, Métais P (1948) Les acides nucléiques du plasma sanguin chez l’homme [The nucleic acids of blood plasma in humans]. C R Acad Sci 142:241–243

    CAS  Google Scholar 

  • Pelc SR (1968) Turnover of DNA and function. Nature 219:162–163

    Article  CAS  PubMed  Google Scholar 

  • Ronquist G (2011) Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med 271:400–413

    Article  PubMed  Google Scholar 

  • Ronquist G, Brody I (1985) Prostasome: its secretion and function in man. Biochim Biophys Acta Rev Biomembr 822:203–218

    Article  CAS  Google Scholar 

  • Ronquist G, Brody I, Gottfries A et al (1978) An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid – Part II. Andrologia 10:427–433

    Article  CAS  PubMed  Google Scholar 

  • Schwartz J (2008) In pursuit of the gene – from Darwin to DNA. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Seymour C, Mothersill C (2000) Relative contribution of bystander and targeted cell killing to the low- dose region of the radiation dose–response curve. Radiat Res 153:508–511

    Article  CAS  PubMed  Google Scholar 

  • Sopikov P (1950) A new method of vegetative hybridization in poultry by blood transfusion. Priroda 39:66

    Google Scholar 

  • Stroun M, Mathon C, Stroun J (1963) Modifications transmitted to the offspring, provoked by heterograft in Solanum melongena. Arch Sci 16:225–245

    Google Scholar 

  • Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The postgraduate studies of JA and AB are supported by scholarships from the North-West University and National Research Foundation (NRF), South Africa. The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Aucamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aucamp, J., Bronkhorst, A.J., Pretorius, P.J. (2016). A Historical and Evolutionary Perspective on Circulating Nucleic Acids and Extracellular Vesicles: Circulating Nucleic Acids as Homeostatic Genetic Entities. In: Gahan, P., Fleischhacker, M., Schmidt, B. (eds) Circulating Nucleic Acids in Serum and Plasma – CNAPS IX. Advances in Experimental Medicine and Biology, vol 924. Springer, Cham. https://doi.org/10.1007/978-3-319-42044-8_17

Download citation

Publish with us

Policies and ethics