Skip to main content

Computing Burchnall–Chaundy Polynomials with Determinants

  • Conference paper
  • First Online:
Engineering Mathematics II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 179))

  • 1465 Accesses

Abstract

In this expository paper we discuss a way of computing the Burchnall–Chaundy polynomial of two commuting differential operators using a determinant. We describe how the algorithm can be generalized to general Ore extensions, and which properties of the algorithm that are preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amitsur, S.A.: Commutative linear differential operators. Pac. J. Math. 8, 1–10 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. Lond. Math. Soc. (Ser. 2) 21, 420–440 (1922)

    Google Scholar 

  3. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. Roy. Soc. Lond. (Ser. A) 118, 557–583 (1928)

    Article  MATH  Google Scholar 

  4. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. II. The Identity \(P^n=Q^m\). Proc. Roy. Soc. Lond. (Ser. A). 134, 471–485 (1932)

    Google Scholar 

  5. Carlson, R.C., Goodearl, K.R.: Commutants of ordinary differential operators. J. Differ. Equs. 35, 339–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Jeu, M., Svensson, C., Silvestrov, S.: Algebraic curves for commuting elements in the \(q\)-deformed Heisenberg algebra. J. Algebr. 321(4), 1239–1255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flanders, H.: Commutative linear differential operators. Technical Report 1, University of California, Berkely (1955)

    Google Scholar 

  8. Goodearl, K.R.: Centralizers in differential, pseudodifferential, and fractional differential operator rings. Rocky Mt J. Math. 13, 573–618 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krichever, I.M.: Integration of non-linear equations by the methods of algebraic geometry. Funktz. Anal. Priloz. 11(1), 15–31 (1977)

    MATH  Google Scholar 

  10. Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Uspekhi Mat. Nauk. 32(6), 183–208 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Larsson, D.: Burchnall–Chaundy theory, Ore extensions and \(\sigma \)-differential operators. Preprint U.U.D.M. Report vol. 45. Department of Mathematics, Uppsala University 13 pp (2008)

    Google Scholar 

  12. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations. In: Proceedings of International Symposium on Algebraic Geometry, Kyoto, Japan, pp. 115–153 (1978)

    Google Scholar 

  13. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(2, 3), 480–508 (1933)

    Google Scholar 

  14. Richter, J.: Burchnall–Chaundy theory for Ore extensions. In: Makhlouf, A., Paal, E., Silvestrov, S.D., Stolin, A. (eds.) Algebra, Geometry and Mathematical Physics, vol. 85, pp. 61–70. Springer Proceedings in Mathematics & Statistics, Mulhouse, France (2014)

    Google Scholar 

  15. Richter, J., Silvestrov, S.: Burchnall-Chaundy annihilating polynomials for commuting elements in Ore extension rings. J. Phys.: Conf. Ser. 346 (2012). doi:10.1088/1742-6596/346/1/012021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Richter, J., Silvestrov, S. (2016). Computing Burchnall–Chaundy Polynomials with Determinants. In: Silvestrov, S., Rančić, M. (eds) Engineering Mathematics II. Springer Proceedings in Mathematics & Statistics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-42105-6_4

Download citation

Publish with us

Policies and ethics