Skip to main content

Nanoparticles for Cardiovascular Imaging with CT

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Complications involved with the progression of atherosclerosis in the coronary arteries are responsible for the majority of deaths related to cardiovascular disease. Clinically, X-ray computed tomography (CT) plays a key role in the assessment of atherosclerosis but current iodinated contrast agents relied upon for CT applications suffer from fast clearance, biocompatibility issues, and nonspecific uptake. Nanotechnologies have presented solutions to these problems by offering precise control over the properties of novel contrast agents. In this chapter, we discuss nanoparticle CT contrast agents that have been used for cardiovascular imaging. We cover iodinated and inorganic nanoparticle structures including nano-emulsions, liposomes, micelles, dendrimers, solid metal core nanoparticles, and others and discuss their applications for vascular and target specific imaging. Tremendous progress has been made in the field over the past decade and we expect that the next decade will see the clinical translation of nanoparticle formulations among many additional technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics- 2015 update: a report from the American heart association. Circulation. 2015;131(4):e29–322.

    Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American heart association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  3. Lumbroso P, Dick CE. X-ray attenuation properties of radiographic contrast media. Med Phys. 1987;14(5):752–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    Article  CAS  PubMed  Google Scholar 

  5. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93.

    Article  CAS  PubMed  Google Scholar 

  6. Stone PH, Coskun AU, Yeghiazarians Y, Kinlay S, Popma JJ, Kuntz RE, et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol. 2003;18(6):458–70.

    Article  PubMed  Google Scholar 

  7. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417(6890):750–4.

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasan SR, Vijayagopal P, Dalferes Jr ER, Abbate B, Radhakrishnamurthy B, Berenson GS. Low density lipoprotein retention by aortic tissue. Contribution of extracellular matrix. Atherosclerosis. 1986;62(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for vcam-1, but not icam-1, in early atherosclerosis. J Clin Invest. 2001;107(10):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huo Y, Hafezi-Moghadam A, Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res. 2000;87(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, et al. Direct demonstration of p-selectin- and vcam-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein e-deficient mice. Circ Res. 1999;84(11):1237–44.

    Article  CAS  PubMed  Google Scholar 

  12. Boisvert WA, Rose DM, Johnson KA, Fuentes ME, Lira SA, Curtiss LK, et al. Up-regulated expression of the cxcr2 ligand kc/gro-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol. 2006;168(4):1385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in ccr2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394(6696):894–7.

    Article  CAS  PubMed  Google Scholar 

  14. Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, et al. Combined inhibition of ccl2, cx3cr1, and ccr5 abrogates ly6c(hi) and ly6c(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation. 2008;117(13):1649–57.

    Article  CAS  PubMed  Google Scholar 

  15. Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des. 2005;11(23):3061–72.

    Article  CAS  PubMed  Google Scholar 

  16. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    Article  CAS  PubMed  Google Scholar 

  17. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation. 1994;90(2):775–8.

    Article  CAS  PubMed  Google Scholar 

  18. Briley-Saebo KC, Shaw PX, Mulder WJ, Choi SH, Vucic E, Aguinaldo JG, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117(25):3206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11.

    Article  CAS  PubMed  Google Scholar 

  20. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  21. Nahrendorf M, Waterman P, Thurber G, Groves K, Rajopadhye M, Panizzi P, et al. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol. 2009;29(10):1444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(9):2103–9.

    Article  CAS  PubMed  Google Scholar 

  23. Johansson LO, Bjornerud A, Ahlstrom HK, Ladd DL, Fujii DK. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging. 2001;13(4):615–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tota-Maharaj R, Al-Mallah MH, Nasir K, Qureshi WT, Blumenthal RS, Blaha MJ. Improving the relationship between coronary artery calcium score and coronary plaque burden: addition of regional measures of coronary artery calcium distribution. Atherosclerosis. 2015;238(1):126–31.

    Article  CAS  PubMed  Google Scholar 

  25. Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, Li W, et al. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging. 2012;5(10):990–9.

    Article  PubMed  Google Scholar 

  26. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    Article  CAS  PubMed  Google Scholar 

  28. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, et al. Molecular mri detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging. 2009;2(6):468–75.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet. 2000;356(9225):209–12.

    Article  CAS  PubMed  Google Scholar 

  31. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121(22):2437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118(2):140–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54(2):130–8.

    Article  PubMed  Google Scholar 

  34. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, et al. Impaired infarct healing in atherosclerotic mice with ly-6c(hi) monocytosis. J Am Coll Cardiol. 2010;55(15):1629–38.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008;247(3):788–96.

    Article  PubMed  Google Scholar 

  36. van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol. 2008;52(24):2017–28.

    Article  PubMed  CAS  Google Scholar 

  37. Yonezawa M, Nagata M, Kitagawa K, Kato S, Yoon Y, Nakajima H, et al. Quantitative analysis of 1.5-t whole-heart coronary MR angiograms obtained with 32-channel cardiac coils: a comparison with conventional quantitative coronary angiography. Radiology. 2014;271(2):356–64.

    Article  PubMed  Google Scholar 

  38. Health QO. Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis. Ont Health Technol Assess Ser. 2010;10(16):1–80.

    Google Scholar 

  39. Sarikaya I. Cardiac applications of PET. Nucl Med Commun. 2015;36(10):971–85.

    Article  CAS  PubMed  Google Scholar 

  40. Mehta NN, Torigian DA, Gelfand JM, Saboury B, Alavi A. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-f] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). J Vis Exp. 2012;63:e3777.

    Google Scholar 

  41. Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med. 2015;56(4):552–9.

    Article  CAS  PubMed  Google Scholar 

  42. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5.

    Article  PubMed  Google Scholar 

  43. Bardo DM, Brown P. Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications. Curr Cardiol Rev. 2008;4(3):231–43.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Otero HJ, Steigner ML, Rybicki FJ. The “post-64” era of coronary CT angiography: understanding new technology from physical principles. Radiol Clin North Am. 2009;47(1):79–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.

    Article  PubMed  Google Scholar 

  46. Dewey M, Teige F, Laule M, Hamm B. Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol. 2007;17(11):2829–37.

    Article  PubMed  Google Scholar 

  47. Hoffmann U, Pena AJ, Cury RC, Abbara S, Ferencik M, Moselewski F, et al. Cardiac CT in emergency department patients with acute chest pain. Radiographics. 2006;26(4):963–78. discussion 79-80.

    Article  PubMed  Google Scholar 

  48. Lee NJ, Litt H. Cardiac CT angiography for evaluation of acute chest pain. Int J Cardiovasc Imaging. 2015.

    Google Scholar 

  49. Goldberg A, Litt HI. Evaluation of the patient with acute chest pain. Radiol Clin North Am. 2010;48(4):745–55.

    Article  PubMed  Google Scholar 

  50. Achenbach S, Daniel WG. Cardiac imaging in the patient with chest pain: coronary CT angiography. Heart. 2010;96(15):1241–6.

    Article  PubMed  Google Scholar 

  51. Nasis A, Mottram PM, Cameron JD, Seneviratne SK. Current and evolving clinical applications of multidetector cardiac CT in assessment of structural heart disease. Radiology. 2013;267(1):11–25.

    Article  PubMed  Google Scholar 

  52. Puchner SB, Liu T, Mayrhofer T, Truong QA, Lee H, Fleg JL, et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the Romicat-II trial. J Am Coll Cardiol. 2014;64(7):684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  CAS  PubMed  Google Scholar 

  54. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.

    Article  PubMed  Google Scholar 

  55. Bittencourt MS, Achenbach S, Marwan M, Seltmann M, Muschiol G, Ropers D, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6(2):121–6.

    Article  PubMed  Google Scholar 

  56. Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG, et al. Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol. 2003;38(10):653–61.

    Article  PubMed  Google Scholar 

  57. Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, et al. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol. 2012;47(8):475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oliva MR, Erturk SM, Ichikawa T, Rocha T, Ros PR, Silverman SG, et al. Gastrointestinal tract wall visualization and distention during abdominal and pelvic multidetector CT with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water. JBR-BTR. 2012;95(4):237–42.

    CAS  PubMed  Google Scholar 

  59. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.

    Article  PubMed  Google Scholar 

  60. Weininger M, Barraza JM, Kemper CA, Kalafut JF, Costello P, Schoepf UJ. Cardiothoracic CT angiography: current contrast medium delivery strategies. Am J Roentgenol. 2011;196(3):W260–72.

    Article  Google Scholar 

  61. Fleischmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin North Am. 2009;47(1):13–26.

    Article  PubMed  Google Scholar 

  62. Bourin M, Jolliet P, Ballereau F. An overview of the clinical pharmacokinetics of X-ray contrast media. Clin Pharmacokinet. 1997;32(3):180–93.

    Article  CAS  PubMed  Google Scholar 

  63. Watchorn J, Miles R, Moore N. The role of CT angiography in military trauma. Clin Radiol. 2013;68(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  64. Goldenberg I, Matetzky S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ. 2005;172(11):1461–71.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thomsen HS, Morcos SK. Contrast media and the kidney: European society of urogenital radiology (ESUR) guidelines. Br J Radiol. 2003;76(908):513–8.

    Article  CAS  PubMed  Google Scholar 

  66. Jun YW, Choi JS, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed Engl. 2006;45(21):3414–39.

    Article  CAS  PubMed  Google Scholar 

  67. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the us adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341(15):1127–33.

    Article  CAS  PubMed  Google Scholar 

  69. Pasternak JJ, Williamson EE. Clinical pharmacology, uses, and adverse reactions of iodinated contrast agents: a primer for the non-radiologist. Mayo Clin Proc. 2012;87(4):390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chhour P, Gallo N, Cheheltani R, Williams D, Al-Zaki A, Paik T, et al. Nanodisco balls: control over surface versus core loading of diagnostically active nanocrystals into polymer nanoparticles. ACS Nano. 2014;8(9):9143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP, et al. Multifunctional imaging nanoprobes. Wires Nanomed Nanobi. 2010;2(2):138–50.

    Article  CAS  Google Scholar 

  73. van Schooneveld MM, Cormode DP, Koole R, van Wijngaarden JT, Calcagno C, Skajaa T, et al. A fluorescent, paramagnetic and pegylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging. 2010;5(4):231–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mieszawska AJ, Kim Y, Gianella A, van Rooy I, Priem B, Labarre MP, et al. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem. 2013;24(9):1429–34.

    Article  CAS  PubMed  Google Scholar 

  75. Satomi T, Nagasaki Y, Kobayashi H, Tateishi T, Kataoka K, Otsuka H. Physicochemical characterization of densely packed poly(ethylene glycol) layer for minimizing nonspecific protein adsorption. J Nanosci Nanotechnol. 2007;7(7):2394–9.

    Article  CAS  PubMed  Google Scholar 

  76. Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.

    Article  CAS  PubMed  Google Scholar 

  77. Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond). 2011;6(5):815–35.

    Article  CAS  Google Scholar 

  78. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med. 2002;8(7):751–5.

    CAS  PubMed  Google Scholar 

  80. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu J, Wong HL, Moselhy J, Bowen B, Wu XY, Johnston MR. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer. 2006;51(3):377–86.

    Article  PubMed  Google Scholar 

  82. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64.

    Article  CAS  PubMed  Google Scholar 

  83. Bhattacharya S, Novell JR, Winslet MC, Hobbs KE. Iodized oil in the treatment of hepatocellular carcinoma. Br J Surg. 1994;81(11):1563–71.

    Article  CAS  PubMed  Google Scholar 

  84. Lim JS, Choi J, Song J, Chung YE, Lim SJ, Lee SK, et al. Nanoscale iodized oil emulsion: a useful tracer for pretreatment sentinel node detection using CT lymphography in a normal canine gastric model. Surg Endosc. 2012;26(8):2267–74.

    Article  PubMed  Google Scholar 

  85. Ahrar K, Gupta S. Hepatic artery embolization for hepatocellular carcinoma: technique, patient selection, and outcomes. Surg Oncol Clin N Am. 2003;12(1):105–26.

    Article  PubMed  Google Scholar 

  86. Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials. 2007;28(36):5555–61.

    Article  CAS  PubMed  Google Scholar 

  87. Weichert JP, Longino MA, Bakan DA, Spigarelli MG, Chou TS, Schwendner SW, et al. Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver. J Med Chem. 1995;38(4):636–46.

    Article  CAS  PubMed  Google Scholar 

  88. Henning T, Weber AW, Bauer JS, Meier R, Carlsen JM, Sutton EJ, et al. Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice. Acad Radiol. 2008;15(3):342–9.

    Article  PubMed  Google Scholar 

  89. Weber SM, Peterson KA, Durkee B, Qi C, Longino M, Warner T, et al. Imaging of murine liver tumor using microCT with a hepatocyte-selective contrast agent: accuracy is dependent on adequate contrast enhancement. J Surg Res. 2004;119(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  90. Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol. 2009;11(2):128–35.

    Article  PubMed  Google Scholar 

  91. Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, et al. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano. 2014;8(10):10537–50.

    Article  CAS  PubMed  Google Scholar 

  92. Badea CT, Fubara B, Hedlund LW, Johnson GA. 4-d micro-CT of the mouse heart. Mol Imaging. 2005;4(2):110–6.

    PubMed  Google Scholar 

  93. Detombe SA, Ford NL, Xiang F, Lu X, Feng Q, Drangova M. Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse model using retrospectively gated micro-computed tomography. Invest Radiol. 2008;43(7):520–9.

    Article  PubMed  Google Scholar 

  94. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grull H. Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials. 2010;31(25):6537–44.

    Article  PubMed  CAS  Google Scholar 

  95. Hallouard F, Briancon S, Anton N, Li X, Vandamme T, Fessi H. Iodinated nano-emulsions as contrast agents for preclinical X-ray imaging: impact of the free surfactants on the pharmacokinetics. Eur J Pharm Biopharm. 2013;83(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  96. Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, et al. Iodinated alpha-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials. 2013;34(2):481–91.

    Article  PubMed  CAS  Google Scholar 

  97. Trubetskoy VS. Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev. 1999;37(1-3):81–8.

    Article  CAS  PubMed  Google Scholar 

  98. Trubetskoy VS, Gazelle GS, Wolf GL, Torchilin VP. Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for X-ray computed tomography. J Drug Target. 1997;4(6):381–8.

    Article  CAS  PubMed  Google Scholar 

  99. Torchilin VP, Frank-Kamenetsky MD, Wolf GL. Ct visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol. 1999;6(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  100. Ryan PJ, Davis MA, DeGaeta LR, Woda B, Melchior DL. Liposomes loaded with contrast material for image enhancement in computed tomography. Work in progress. Radiology. 1984;152(3):759–62.

    Article  CAS  PubMed  Google Scholar 

  101. Havron A, Seltzer SE, Davis MA, Shulkin P. Radiopaque liposomes: a promising new contrast material for computed tomography of the spleen. Radiology. 1981;140(2):507–11.

    Article  CAS  PubMed  Google Scholar 

  102. Seltzer SE, Davis MA, Adams DF, Shulkin PM, Landis WJ, Havron A. Liposomes carrying diatrizoate. Characterization of biophysical properties and imaging applications. Invest Radiol. 1984;19(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  103. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  104. Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad Radiol. 2003;10(5):475–83.

    Article  PubMed  Google Scholar 

  105. Pannu HK, Thompson RE, Phelps J, Magee CA, Fishman EK. Optimal contrast agents for vascular imaging on computed tomography: iodixanol versus iohexol. Acad Radiol. 2005;12(5):576–84.

    Article  PubMed  Google Scholar 

  106. Mukundan Jr S, Ghaghada KB, Badea CT, Kao CY, Hedlund LW, Provenzale JM, et al. A liposomal nanoscale contrast agent for preclinical CT in mice. Am J Roentgenol. 2006;186(2):300–7.

    Article  Google Scholar 

  107. Carruthers A, Melchior DL. Studies of the relationship between bilayer water permeability and bilayer physical state. Biochemistry. 1983;22(25):5797–807.

    Article  CAS  Google Scholar 

  108. Seltzer SE, Blau M, Herman LW, Hooshmand RL, Herman LA, Adams DF, et al. Contrast material-carrying liposomes: biodistribution, clearance, and imaging characteristics. Radiology. 1995;194(3):775–81.

    Article  CAS  PubMed  Google Scholar 

  109. Elrod DB, Partha R, Danila D, Casscells SW, Conyers JL. An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid. Nanomedicine. 2009;5(1):42–5.

    CAS  PubMed  Google Scholar 

  110. Kweon S, Lee HJ, Hyung WJ, Suh J, Lim JS, Lim SJ. Liposomes coloaded with iopamidol/lipiodol as a res-targeted contrast agent for computed tomography imaging. Pharm Res. 2010;27(7):1408–15.

    Article  CAS  PubMed  Google Scholar 

  111. Simon GH, Fu Y, Berejnoi K, Fournier LS, Lucidi V, Yeh B, et al. Initial computed tomography imaging experience using a new macromolecular iodinated contrast medium in experimental breast cancer. Invest Radiol. 2005;40(9):614–20.

    Article  PubMed  Google Scholar 

  112. Yordanov AT, Lodder AL, Woller EK, Cloninger MJ, Patronas N, Milenic D, et al. Novel iodinated dendritic nanoparticles for computed tomography (ct) imaging. Nano Lett. 2002;2(6):595–9.

    Article  CAS  Google Scholar 

  113. Fu Y, Nitecki DE, Maltby D, Simon GH, Berejnoi K, Raatschen HJ, et al. Dendritic iodinated contrast agents with peg-cores for CT imaging: synthesis and preliminary characterization. Bioconjug Chem. 2006;17(4):1043–56.

    Article  CAS  PubMed  Google Scholar 

  114. Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, et al. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131(42):15522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636–41.

    Article  CAS  PubMed  Google Scholar 

  117. Hyafil F, Cornily JC, Rudd JH, Machac J, Feldman LJ, Fayad ZA. Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med. 2009;50(6):959–65.

    Article  CAS  PubMed  Google Scholar 

  118. Van Herck JL, De Meyer GR, Martinet W, Salgado RA, Shivalkar B, De Mondt R, et al. Multi-slice computed tomography with n1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res Cardiol. 2010;105(1):51–9.

    Article  PubMed  Google Scholar 

  119. Ding J, Wang Y, Ma M, Zhang Y, Lu S, Jiang Y, et al. Ct/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials. 2013;34(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  120. Glickson JD, Lund-Katz S, Zhou R, Choi H, Chen IW, Li H, et al. Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol Imaging. 2008;7(2):101–10.

    CAS  PubMed  Google Scholar 

  121. Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, et al. Naphthalocyanine-reconstituted ldl nanoparticles for in vivo cancer imaging and treatment. Int J Nanomedicine. 2007;2(4):767–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, et al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano. 2013;7(11):9761–70.

    Article  CAS  PubMed  Google Scholar 

  123. Hill ML, Corbin IR, Levitin RB, Cao W, Mainprize JG, Yaffe MJ, et al. In vitro assessment of poly-iodinated triglyceride reconstituted low-density lipoprotein: initial steps toward CT molecular imaging. Acad Radiol. 2010;17(11):1359–65.

    Article  PubMed  Google Scholar 

  124. Caride VJ, Sostman HD, Twickler J, Zacharis H, Orphanoudakis SC, Jaffe CC. Brominated radiopaque liposomes: contrast agent for computed tomography of liver and spleen: a preliminary report. Invest Radiol. 1982;17(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  125. Mattrey RF, Long DM, Peck WW, Slutsky RA, Higgins CB. Perfluoroctylbromide as a blood pool contrast agent for liver, spleen, and vascular imaging in computed tomography. J Comput Assist Tomogr. 1984;8(4):739–44.

    Article  CAS  PubMed  Google Scholar 

  126. Bruneton JN, Falewee MN, Francois E, Cambon P, Philip C, Riess JG, et al. Liver, spleen, and vessels: preliminary clinical results of CT with perfluorooctylbromide. Radiology. 1989;170(1 Pt 1):179–83.

    Article  CAS  PubMed  Google Scholar 

  127. Behan M, O'Connell D, Mattrey RF, Carney DN. Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results. Am J Roentgenol. 1993;160(2):399–405.

    Article  CAS  Google Scholar 

  128. Mattrey RF. Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging. Am J Roentgenol. 1989;152(2):247–52.

    Article  CAS  Google Scholar 

  129. Li A, Zheng Y, Yu J, Wang Z, Yang Y, Wu W, et al. Superparamagnetic perfluorooctylbromide nanoparticles as a multimodal contrast agent for us, MR, and CT imaging. Acta Radiol. 2013;54(3):278–83.

    Article  PubMed  Google Scholar 

  130. Brown AL, Naha PC, Benavides-Montes V, Litt HI, Goforth AM, Cormode DP. Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle X-ray contrast agents. Chem Mater. 2014;26(7):2266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10(3):831–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett. 2011;11(10):4029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 2009;9(6):2212–7.

    Article  CAS  PubMed  Google Scholar 

  134. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69(9):3892–900.

    Article  PubMed Central  CAS  Google Scholar 

  135. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  136. Lee SE, Sasaki DY, Park Y, Xu R, Brennan JS, Bissell MJ, et al. Photonic gene circuits by optically addressable sirna-au nanoantennas. ACS Nano. 2012;6(9):7770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Naha PC, Chhour P, Cormode DP. Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicol In Vitro. 2015;29(7):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    Article  CAS  PubMed  Google Scholar 

  139. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, et al. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol. 2007;42(12):797–806.

    Article  CAS  PubMed  Google Scholar 

  140. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661–5.

    Article  CAS  PubMed  Google Scholar 

  141. Jana NR, Gearheart L, Murphy CJ. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater. 2001;13(7):2313–22.

    Article  CAS  Google Scholar 

  142. Turkevich J, Stevenson P, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.

    Article  Google Scholar 

  143. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32(36):9796–809.

    Article  CAS  PubMed  Google Scholar 

  144. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333–41.

    Article  CAS  PubMed  Google Scholar 

  145. Chanda N, Upendran A, Boote EJ, Zambre A, Axiak S, Selting K, et al. Gold nanoparticle based X-ray contrast agent for tumor imaging in mice and dog: a potential nano-platform for computer tomography theranostics. J Biomed Nanotechnol. 2014;10(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  146. Peng C, Li K, Cao X, Xiao T, Hou W, Zheng L, et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale. 2012;4(21):6768–78.

    Article  CAS  PubMed  Google Scholar 

  147. Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C. 2010;114(1):50–6.

    Article  CAS  Google Scholar 

  148. Liu H, Xu Y, Wen S, Chen Q, Zheng L, Shen M, et al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chemistry (Easton). 2013;19(20):6409–16.

    CAS  Google Scholar 

  149. Ye K, Qin J, Peng Z, Yang X, Huang L, Yuan F, et al. Polyethylene glycol-modified dendrimer-entrapped gold nanoparticles enhance CT imaging of blood pool in atherosclerotic mice. Nanoscale Res Lett. 2014;9(1):529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  151. Naha PC, Zaki AA, Hecht E, Chorny M, Chhour P, Blankemeyer E, et al. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B Mater Biol Med. 2014;2(46):8239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bonitatibus Jr PJ, Torres AS, Goddard GD, FitzGerald PF, Kulkarni AM. Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Chem Commun (Camb). 2010;46(47):8956–8.

    Article  CAS  Google Scholar 

  153. Bonitatibus Jr PJ, Torres AS, Kandapallil B, Lee BD, Goddard GD, Colborn RE, et al. Preclinical assessment of a Zwitterionic tantalum oxide nanoparticle X-ray contrast agent. ACS Nano. 2012;6(8):6650–8.

    Article  CAS  PubMed  Google Scholar 

  154. Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, et al. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc. 2011;133(14):5508–15.

    Article  CAS  PubMed  Google Scholar 

  155. Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  156. Mohs AM, Lu ZR. Gadolinium(iii)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opin Drug Deliv. 2007;4(2):149–64.

    Article  CAS  PubMed  Google Scholar 

  157. Karagiannis P, Niumsawatt V, Rozen WM. An alternative contrast medium for computed tomographic angiography: gadolinium. Plast Reconstr Surg. 2014;133(6):900e–1e.

    Google Scholar 

  158. Gierada DS, Bae KT. Gadolinium as a CT contrast agent: assessment in a porcine model. Radiology. 1999;210(3):829–34.

    Article  CAS  PubMed  Google Scholar 

  159. Zeng C, Shi X, Wu B, Zhang D, Zhang W. Colloids containing gadolinium-capped gold nanoparticles as high relaxivity dual-modality contrast agents for CT and MRI. Colloids Surf B. 2014;123:130–5.

    Article  CAS  Google Scholar 

  160. Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008;130(18):5908–15.

    Article  CAS  PubMed  Google Scholar 

  161. Huo D, He J, Li H, Yu H, Shi T, Feng Y, et al. Fabrication of au@ag core-shell NPs as enhanced CT contrast agents with broad antibacterial properties. Colloids Surf B. 2014;117:29–35.

    Article  CAS  Google Scholar 

  162. Huo D, Ding J, Cui YX, Xia LY, Li H, He J, et al. X-ray CT and pneumonia inhibition properties of gold-silver nanoparticles for targeting MRSA induced pneumonia. Biomaterials. 2014;35(25):7032–41.

    Article  CAS  PubMed  Google Scholar 

  163. Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of fept nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270–8.

    Article  CAS  PubMed  Google Scholar 

  164. Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, et al. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci Rep. 2014;4:3653.

    PubMed  PubMed Central  Google Scholar 

  165. Jakhmola A, Anton N, Anton H, Messaddeq N, Hallouard F, Klymchenko A, et al. Poly-epsilon-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials. 2014;35(9):2981–6.

    Article  CAS  PubMed  Google Scholar 

  166. Mongan J, Rathnayake S, Fu Y, Wang R, Jones EF, Gao DW, et al. In vivo differentiation of complementary contrast media at dual-energy CT. Radiology. 2012;265(1):267–72.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Xing H, Bu W, Ren Q, Zheng X, Li M, Zhang S, et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials. 2012;33(21):5384–93.

    Article  CAS  PubMed  Google Scholar 

  168. Liu Y, Liu J, Ai K, Yuan Q, Lu L. Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: promises and prospects. Contrast Media Mol Imaging. 2014;9(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  169. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed Engl. 2012;51(6):1437–42.

    Article  CAS  PubMed  Google Scholar 

  170. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials. 2012;33(4):1079–89.

    Article  CAS  PubMed  Google Scholar 

  171. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci U S A. 2010;107(19):8760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34(2):470–80.

    Article  CAS  PubMed  Google Scholar 

  173. Eck W, Nicholson AI, Zentgraf H, Semmler W, Bartling S. Anti-cd4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett. 2010;10(7):2318–22.

    Article  CAS  PubMed  Google Scholar 

  174. Hainfeld JF, O'Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2011;84(1002):526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chhour P, Naha PC, O'Neill SM, Litt HI, Reilly MP, Ferrari VA, et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials. 2016;87:93–103.

    Article  CAS  PubMed  Google Scholar 

  176. Danad I, Fayad ZA, Willemink MJ, Min JK. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. JACC Cardiovasc Imaging. 2015;8(6):710–23.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, et al. An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano. 2012;6(4):3364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Feuerlein S, Roessl E, Proksa R, Martens G, Klass O, Jeltsch M, et al. Multienergy photon-counting k-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology. 2008;249(3):1010–6.

    Article  PubMed  Google Scholar 

  179. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pan D, Roessl E, Schlomka JP, Caruthers SD, Senpan A, Scott MJ, et al. Computed tomography in color: Nanok-enhanced spectral CT molecular imaging. Angew Chem Int Ed Engl. 2010;49(50):9635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by R01 HL131557 (D.P.C.), R00 EB012165 (D.P.C.), W. W. Smith Charitable Trust (D.P.C.), and the T32 HL007954 (P.C.). We also thank the University of Pennsylvania for startup funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Cormode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chhour, P., Cheheltani, R., Naha, P.C., Litt, H.I., Ferrari, V.A., Cormode, D.P. (2017). Nanoparticles for Cardiovascular Imaging with CT. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_17

Download citation

Publish with us

Policies and ethics