Skip to main content

Laser Components

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

  • 3881 Accesses

Abstract

The chapter covers InP based laser diodes (1.3–1.6 μm wavelength range) deployed as transmitter devices in today’s optical communication systems. Only discrete directly modulated devices are considered in this chapter which is followed by two other laser related articles dealing specifically with ultra-fast and wavelength-tunable devices. In the first part a description of basic laser structures and technology, of relevant gain materials and their impact on lasing properties is given. This is followed by summarizing fundamental characteristics of Fabry-Pérot devices. Recent achievements on the derivative semiconductor optical amplifiers (SOA) will then be addressed which are no longer treated in a dedicated chapter in this re-edited book. The second part is devoted to single-wavelength lasers focusing on design aspects and various implementations. Essentially distributed feedback (DFB) devices are treated but other options like so-called “discrete mode” laser diodes will also be outlined. The third part of this chapter is devoted to surface emitting laser diodes, mainly vertical cavity surface emitting lasers (VCSEL) are also including horizontal cavity DFB structures designed for surface emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent light emission from GaAs p–n junctions. Phys. Rev. Lett. 9, 366–368 (1962)

    ADS  Google Scholar 

  2. M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill, G.J. Lasher, Stimulated emission of radiation from GaAs p–n junction. Appl. Phys. Lett. 1, 62–64 (1962)

    ADS  Google Scholar 

  3. Z.I. Alferov, V.M. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyakov, Injection properties of n-AlxGa1 − xAs p-GaAs heterojunctions. Sov. Phys. Semicond. 2, 843 (1969)

    Google Scholar 

  4. I. Hayashi, M.B. Panish, P.W. Foy, A low threshold room temperature injection laser. IEEE J. Quantum Electron. 5, 210–211 (1969)

    ADS  Google Scholar 

  5. J.J. Hsieh, Room temperature operation of GaInAsP/InP double heterostructure diode lasers emitting at 1.1 μm. Appl. Phys. Lett. 28, 283–285 (1976)

    ADS  Google Scholar 

  6. T. Yamamoto, K. Sakai, S. Akiba, Y. Suematsu, In1 − xGaxAsyP1 − y/InP DH lasers fabricated on InP(100) substrates. IEEE J. Quantum Electron. 14, 95–98 (1978)

    ADS  Google Scholar 

  7. G.H.B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980). ISBN 0471276855

    Google Scholar 

  8. N. Grote, The III–V materials for Infra-red devices, in Materials for Optoelectronics, ed. by M. Quillec (Kluwer Academic, Amsterdam, 1996), pp. 153–183. ISBN 0-7923-9665-0

    Google Scholar 

  9. K. Utaka, K. Kobayashi, Y. Suematsu, Lasing characteristics of 1.5–1.6 μm GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors. IEEE J. Quantum Electron. 17, 651–658 (1981)

    ADS  Google Scholar 

  10. K. Kadoiwa, K. Ono, H. Nishiguchi, K. Matsumoto, Y. Ohkura, T. Yagi, P-substrate partially inverted buried heterostructure distributed feedback laser diode performance improvement by inserting Zn diffusion-stopping layer. Jpn. J. Appl. Phys. 45, 7704–7708 (2006)

    ADS  Google Scholar 

  11. W. Feng, J.Q. Pan, L.F. Wang, J. Bian, B.J. Wang, F. Zhou, X. An, L.J. Zhao, H.L. Zhu, W. Wang, Fabrication of InGaAlAs MQW buried heterostructure lasers by narrow stripe selective MOVPE. J. Phys. D, Appl. Phys. 40, 361–365 (2007)

    ADS  Google Scholar 

  12. H. Sato, T. Tsuchuya, T. Kitatani, N. Takahashi, K. Oouchi, K. Nakahara, M. Aoki, Highly reliable 1.3 μm InGaAlAs buried heterostructure laser diode for 10 GbE, in Proc. 16th Intern. Conf. on InP and Related Materials (IPRM’04), Kagashima, Japan (2004), pp. 731–733

    Google Scholar 

  13. K. Nakamura, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, S. Tanaka, 56-Gb/s direct modulation in InGaAlAs BH-DFB lasers at 55 °C, in Conf. Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Th3A.1

    Google Scholar 

  14. Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, 112-Gb/s WDM link using two Directly Modulated Al-MQW BH DFB Lasers at 56 Gb/s, in Conf. Opt. Fiber Commun. (OFC’15), Los Angeles, USA (2015), Postdeadline papers, Th5B.6

    Google Scholar 

  15. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, A. Suzuki, Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)

    ADS  Google Scholar 

  16. P.J.A. Thijs, E.A. Montie, T. van Dongen, Structures for improved 1.5 μm wavelength lasers grown by LP-OMVPE; InGaAs–InP strained-layer quantum wells a good candidate. J. Cryst. Growth 107, 731–740 (1991)

    ADS  Google Scholar 

  17. P.J.A. Thijs, J.J.M. Binsma, L.F. Tiemejer, T. van Dongen, Improved performance 1.5 μm wavelength tensile and compressively strained InGaAs–InGaAsP quantum well lasers, in 17th Europ. Conf. Optical Communication (ECOC’91), Paris (1991), vol. 2, pp. 31–38, Techn. Digest

    Google Scholar 

  18. M.A. Newkirk, B.I. Miller, U. Koren, M.G. Young, M. Chien, R.M. Jopson, C.A. Burrus, 1.5 μm multi quantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain. IEEE Photonics Technol. Lett. 5, 406–408 (1993)

    ADS  Google Scholar 

  19. D.G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, S. Freisem, Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 45, 54–56 (2009)

    ADS  Google Scholar 

  20. T.J. Badcock, H.Y. Liu, K.M. Groom, C.Y. Jin, M. Gutierrez, M. Hopkinson, D.J. Mowbray, M.S. Skolnick, 1.3 μm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electron. Lett. 42, 922–923 (2006)

    ADS  Google Scholar 

  21. T. Kageyama, K. Takada, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, H. Kondo, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, Y. Arakawa, Long-wavelength quantum dot FP and DFB lasers for high temperature applications, in SPIE Photonics West 2012, San Francisco, CA, USA (2012), 8277-11

    Google Scholar 

  22. G.H. Duan, A. Shen, A. Akrout, F. van Dijk, F. Lelarge, F. Pommereau, O. Le-Gouezigou, J.G. Provost, H. Gariah, High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications. Bell Labs Tech. J. 14, 63–84 (2009)

    Google Scholar 

  23. C.S. Lee, W. Guo, D. Basu, P. Bhattacharya, High performance tunnel injection quantum dot comb laser. Appl. Phys. Lett. 96, 101107 (2010)

    ADS  Google Scholar 

  24. M. Moehrle, H. Roehle, A. Sigmund, A. Suna, F. Reier, High-performance all-active tapered 1550 nm InGaAsP BH-FP lasers, in Proc. 14th Intern. Conf. on InP and Related Materials (IPRM’02), Stockholm (2002), pp. 27–30

    Google Scholar 

  25. S.W. Park, J.H. Han, Y.T. Han, S.S. Park, B.Y. Yoon, B.K. Kim, H.K. Sung, J.I. Song, Two-step laterally tapered spot-size converter 1.55 μm laser diode having a high slope efficiency. IEEE Photonics Technol. Lett. 18, 2138–2140 (2006)

    ADS  Google Scholar 

  26. H. Kobayashi, M. Ekawa, N. Okazaki, O. Aoki, S. Ogita, H. Soda, Tapered thickness MQW waveguide BH MQW lasers. IEEE Photonics Technol. Lett. 6, 1080–1081 (1994)

    ADS  Google Scholar 

  27. A. Guermache, V. Voiriot, N. Bouche, F. Lelarge, D. Locatelli, R.M. Capella, J. Jacquet, 1 W fibre coupled power InGaAsP/InP 14xx pump laser for Raman amplification. Electron. Lett. 40, 1535–1536 (2004)

    ADS  Google Scholar 

  28. M. Haverkamp, G. Kochem, K. Boucke, E. Schulze, H. Roehle, 1.1 W four-wavelength Raman pump using BH lasers, in Opt. Fiber Commun. Conf. (OFC/NFOEC’07) Anaheim USA (2007), Techn. Digest, paper OMK7

    Google Scholar 

  29. T. Tanbun-Ek, R. Pathak, Z. Wang, H. Winhold, S. Kim, High power and high efficiency 14xx nm wavelength Fabry-Perot lasers. Proc. SPIE 8965, 896511 (2014)

    Google Scholar 

  30. J. Telkkälä, J. Boucart, M. Krejci, T. Crum, N. Lichtenstein, High power laser diodes at 14xx nm wavelength range for industrial and medical applications. Proc. SPIE 8965, 896510 (2014)

    Google Scholar 

  31. A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, M.J. Wale, Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. IEEE J. Sel. Top. Quantum Electron. 11, 149–156 (2006)

    ADS  Google Scholar 

  32. M. Theurer, G. Przyrembel, A. Sigmund, W.-D. Molzow, U. Troppenz, M. Möhrle, 56 Gb/s L-band InGaAlAs ridge waveguide electroabsorption modulated laser with integrated SOA. Phys. Status Solidi A 213, 970–974 (2016)

    ADS  Google Scholar 

  33. A. Borghesani, I.F. Lealman, A. Poustie, D.W. Smith, R. Wyatt, High temperature, colourless operation of a reflective semiconductor optical amplifier for 2.5 bit/s upstream transmission in a WDM-PON, in Proc. 33rd Europ. Conf. on Optical Communication (ECOC’07), Berlin (2007), paper We.6.4.1

    Google Scholar 

  34. Q.T. Nguyen, G. Vaudel, O. Vaudel, L. Bramerie, P. Besnard, A. Garreau, C. Kazmierski, A. Shen, G.H. Duan, P. Chanclou, J.C. Simaon, Multi-functional R-EAM-SOA for 10-Gb/s WDM access, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles (USA) (2011), Techn. Digest, paper OThG7

    Google Scholar 

  35. J.H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S.S. Djordjevic, H.D. Tucker, J.E. Cunningham, K. Raj, X. Zheng, A.V. Krishnamoorthy, High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links. Opt. Express 22, 7678–7685 (2014)

    ADS  Google Scholar 

  36. L. Schares, R. Budd, D. Kuchta, F. Doany, C. Schow, M. Möhrle, A. Sigmund, W. Rehbein, Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics, in Proc. 41st Europ. Conf. on Optical Communication (ECOC’15), Valencia, Spain (2015), paper Mo-3.2.1

    Google Scholar 

  37. Q. Cheng, A. Wonfor, J.L. Wei, R.V. Penty, I.H. White, Low-energy, high-performance lossless \(8\times8\) SOA switch, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, USA (2015), paper Th4E.6

    Google Scholar 

  38. H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    ADS  Google Scholar 

  39. M. Kamp, J. Hofmann, F. Schaefer, M. Reinhard, M. Fischer, T. Bleuel, J.P. Reithmeier, A. Forchel, Lateral coupling—a material independent way to complex coupled DFB lasers. Opt. Mater. 17, 19–25 (2001)

    ADS  Google Scholar 

  40. H. Burkhard, S. Hansmann, Transmitters, in Fibre Optic Communication Devices, ed. by N. Grote, H. Venghaus (Springer, Berlin, 2001), pp. 71–116. ISBN 3-540-66977-9

    Google Scholar 

  41. G.P. Agrawal, A.H. Bobeck, Modeling of distributed-feedback semiconductor lasers with axially-varying parameters. IEEE J. Quantum Electron. 24, 2407–2414 (1988)

    ADS  Google Scholar 

  42. A.J. Lowery, A. Keating, C.N. Murtonen, Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers. IEEE J. Quantum Electron. 28, 1874–1883 (1992)

    ADS  Google Scholar 

  43. A.K. Verma, M. Steib, Y.L. Ha, T. Sudo, 25 Gbps 1.3 μm DFB laser for 10–25 km transmission in 100 GbE systems, in Opt. Fiber Commun. Conf. (OFC’09), San Diego, USA (2009), Techn. Digest, paper OThT2

    Google Scholar 

  44. G.P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, H. Lu, Partly gain-coupled 1.55 μm strained-layer multiquantum-well DFB laser. IEEE J. Quantum Electron. 29, 1736–1742 (1993)

    ADS  Google Scholar 

  45. J. Kreissl, W. Brinker, E. Lenz, T. Gaertner, W. Rehbein, S. Bauer, B. Sartorius, Isolator-free directly modulated complex-coupled DFB lasers for low cost applications, in Opt. Fiber Commun. Conf. (OFC’05), Anaheim, USA (2005), vol. 4, pp. 3–4, Techn. Digest

    Google Scholar 

  46. J. Kreissl, U. Troppenz, W. Rehbein, T. Gaertner, P. Harde, M. Radziunas, 40 Gbit/s directly modulated passive feedback laser with complex-coupled DFB section, in Proc. 33rd Europ. Conf. on Optical Commun. (ECOC’07), Berlin (2007), paper We.8.1.4

    Google Scholar 

  47. M. Moehrle, A. Sigmund, A. Suna, L. Moerl, W. Fuerst, A. Dounia, W.D. Molzow, High single-mode yield, tapered 1.55 μm DFB lasers for CWDM applications, in Proc. 31st Europ. Conf. on Optical Commun. (ECOC’05), Glasgow, UK (2005), paper Tu 4.5.4

    Google Scholar 

  48. L. Moerl, M. Moehrle, W. Brinker, A. Sigmund, N. Grote, Tapered 1550 nm DFB lasers with low feedback sensitivity, in Proc. 32nd Europ. Conf. on Optical Commun. (ECOC’06), Cannes, France (2006), paper Mo3.4.3

    Google Scholar 

  49. M. Moehrle, W. Brinker, C. Wagner, G. Przyrembel, A. Sigmund, W.D. Molzow, First complex coupled 1490 nm CSDFB lasers: high yield, low feedback sensitivity, and uncooled 10 Gb/s modulation, in Proc. 35th Europ. Conf. on Optical Commun. (ECOC’09), Vienna, Austria (2009), paper We 8.1.2

    Google Scholar 

  50. C. Herbert, D. Jones, A. Kaszubowska, B. Kelly, M. Rensing, J. O’Carroll, P.M. Anandarajah, P. Perry, L.P. Barry, J. O’Gorman, Discrete mode lasers for communication applications. IET J. Optoelectron. 3, 1–17 (2009)

    Google Scholar 

  51. R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, J. O’Gorman, −40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at \(\lambda= 1.3~\upmu \mbox{m}\). Electron. Lett. 45, 43–45 (2009)

    ADS  Google Scholar 

  52. J. O’Carroll, D. Byrne, B. Kelly, R. Phelan, F.C.G. Gunning, P.M. Anandarajah, L.P. Barry, Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm. Electron. Lett. 50, 948–950 (2014)

    ADS  Google Scholar 

  53. B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C.B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L.P. Barry, J. O’Gorman, Discrete mode laser diodes with very narrow linewidth emission. Electron. Lett. 43, 1282–1283 (2007)

    ADS  Google Scholar 

  54. J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L.P. Barry, J. O’Gorman, Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diode for coherent communications applications. Opt. Express 19, 18–22 (2011)

    Google Scholar 

  55. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979)

    ADS  Google Scholar 

  56. F. Koyama, S. Kinoshita, K. Iga, Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl. Phys. Lett. 55, 221–222 (1989)

    ADS  Google Scholar 

  57. R. Michalzik, Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences (2013)

    Google Scholar 

  58. S. Adachi, Physical properties of III–V semiconductor compounds (Wiley, Chichester, 1992)

    Google Scholar 

  59. S. Adachi, Lattice thermal resistivity of III–V compound alloys. J. Appl. Phys. 54, 1844–1848 (1983)

    ADS  Google Scholar 

  60. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contacts for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97–99 (1994)

    ADS  Google Scholar 

  61. S. Mathis, K. Lau, A. Andrews, E. Hall, G. Almuneau, E. Hu, J. Speck, Lateral oxidation kinetics of AlAsSb and related alloys lattice matched to InP. J. Appl. Phys. 89, 2458 (2001)

    ADS  Google Scholar 

  62. A. Black, A. Hawkins, N. Margalit, D. Babic, A. Holmes, Y. Chang, P. Abraham, J. Bowers, E. Hu, Wafer fusion: materials issues and device results. IEEE J. Sel. Top. Quantum Electron. 3, 927–936 (1997)

    Google Scholar 

  63. A. Bachmann, K. Kashani-Shirazi, S. Arafin, M.-C. Amann, GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm. IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009)

    ADS  Google Scholar 

  64. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M.-C. Amann, Low-resistance InGa(Al)As tunnel junctions for long-wavelength vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 39, 1727–1729 (2000)

    ADS  Google Scholar 

  65. G. Hadley, K. Lear, M. Warren, K. Choquette, J. Scott, S. Corzine, Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32, 607–616 (1996)

    ADS  Google Scholar 

  66. R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, C. Lauer, M. Maute, M.-C. Amann, Long-wavelength InP-based VCSELs with buried tunnel junction: Properties and applications. Proc. SPIE 5364, 1–15 (2004)

    ADS  Google Scholar 

  67. M. Müller, P. Wolf, C. Grasse, M.P.I. Dias, M. Ortsiefer, G. Böhm, E. Wong, W. Hofmann, D. Bimberg, M.C. Amann, 1.3 μm short-cavity VCSELs enabling error-free transmission at 25 Gbps over a 25 km fiber link. Electron. Lett. 48, 1487–1489 (2012)

    ADS  Google Scholar 

  68. M. Ortsiefer, B. Kögel, J. Rosskopf, M. Görblich, Y. Xu, C. Gréus, C. Neumeyr, Long wavelength high speed VCSELs for long haul and data centers, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), paper W4C.2

    Google Scholar 

  69. C. Xie, S. Spiga, P. Dong, P. Winzer, A. Gnauck, C. Gréus, M. Ortsiefer, C. Neumeyr, M. Müller, M.C. Amann, Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), paper Th3K.2

    Google Scholar 

  70. J. Estarán, R. Rodes, T.T. Pham, M. Ortsiefer, C. Neumeyr, J. Rosskopf, I. Tafur Monroy, Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links, in 38th Europ. Conf. on Optical Commun. (ECOC’12), (2012), Th.2.B.3

    Google Scholar 

  71. C.J. Chang-Hasnain, W. Yang, High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4, 379–440 (2012)

    ADS  Google Scholar 

  72. C. Gierl, T. Gründl, P. Debernardi, K. Zogal, C. Grasse, H.A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, M.-C. Amann, Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning. Opt. Express 19, 17336–17343 (2011)

    ADS  Google Scholar 

  73. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon, 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Opt. Express 19, 16996–17001 (2011)

    ADS  Google Scholar 

  74. A. Mereuta, G. Suruceanu, A. Caliman, V. Iakovlev, A. Sirbu, E. Kapon, 10-Gb/s and 10-km error-free transmission up to 100 °C with 1.3-μm wavelength wafer-fused VCSELs. Opt. Express 17, 12981–12986 (2009)

    ADS  Google Scholar 

  75. P. Dowd, S.R. Johnson, S.A. Field, M. Adamcyk, S.A. Chaparro, J. Joseph, K. Hilgers, M.P. Horning, K. Shiralagi, Y.H. Zhang, Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communication applications. Electron. Lett. 39, 978–988 (2003)

    ADS  Google Scholar 

  76. M. Kondow, T. Kitatani, S. Nakatsuka, M.C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, GaInNAs, A novel material for long-wavelength semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 3, 719–730 (1997)

    ADS  Google Scholar 

  77. H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 μm VCSELs. Semicond. Sci. Technol. 17, 892–897 (2002)

    ADS  Google Scholar 

  78. Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, T. Katsuyama, Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure. SEI Tech. Rev. 68, 40–43 (2009)

    Google Scholar 

  79. J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, T. Fanning, M. Schnoes, Commercial GalnNAs VCSELs grown by MBE. Phys. Status Solidi C 5, 2951–2956 (2008)

    ADS  Google Scholar 

  80. R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, J. Bowers, 1.3 μm photoluminescence from InGaAs quantum dots on GaAs. Appl. Phys. Lett. 67, 3795–3797 (1995)

    ADS  Google Scholar 

  81. M. Laemmlin, G. Fiol, M. Kuntz, F. Hopfer, A. Mutig, N. Ledentsov, A.R. Kovsh, C. Schubert, A. Jacob, A. Umbach, D. Bimberg, Quantum dot based photonic devices at 1.3 μm: direct modulation, mode-locking, SOAs and VCSELs. Phys. Status Solidi C 3, 391–394 (2006)

    ADS  Google Scholar 

  82. M.A. Wistey, S.R. Bank, H.B. Yuen, L.L. Goddard, J.S. Harris, Monolithic GaInNAsSb VCSELs at 1.46 μm on GaAs by MBE. Electron. Lett. 39, 1822–1823 (2003)

    ADS  Google Scholar 

  83. N. Yamamoto, K. Akahane, S. Gozu, A. Ueta, N. Ohtani, 1.55 μm-waveband emissions from Sb-based quantum-dot vertical-cavity surface-emitting laser structures fabricated on GaAs substrate. Jpn. J. Appl. Phys. 45, 3423–3426 (2006)

    ADS  Google Scholar 

  84. M. Moehrle, J. Kreissl, W.D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, N. Grote, Ultra-low 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode, in Proc. 22nd Intern. Conf. on InP and Related Materials (IPRM’10), Takamatsu, Japan (2010), pp. 55–58

    Google Scholar 

  85. K. Adachi, K. Shinoda, T. Fukamachi, T. Shiota, T. Kitatani, K. Hosomi, Y. Matsuoka, T. Sugawara, M. Aoki, A 1.3 μm lens-integrated horizontal-cavity surface-emitting laser with direct and highly efficient coupling to optical fibers, in Opt. Fiber Commun. Conf. (OFC’09), San Diego, USA (2009), Techn. Digest, paper JThA31

    Google Scholar 

  86. K. Adachi, K. Shinoda, T. Shiota, T. Fukamachi, T. Kitatani, K. Hosomi, Y. Matsuoka, T. Sugawara, M. Aoki, 100 °C, 25 Gbit/s direct modulation of 1.3 μm surface emitting laser, in Conference on Lasers and Electro-Optics (CLEO/QELS’10), San Jose, USA (2010), Techn. Digest, paper CME4

    Google Scholar 

  87. K. Adachi, T. Suzuki, T. Ohtoshi, K. Nakahara, M. Sagawa, A. Nakanishi, K. Naoe, S. Tanaka, Facet-free surface-emitting 1.3-μm DFB laser, in 41st Europ. Conf. on Optical Communication (ECOC’15), Valencia, Spain (2015), paper We 1.5.4

    Google Scholar 

  88. T. Suzuki, K. Adachi, A. Takei, Y. Wakayama, A. Nakanishi, K. Naoe, K. Nakahara, S. Tanaka, K. Uomi, Capability of high optical-feedback tolerance and non-hermetic-packaging for low-cost interconnections using lens-integrated surface-emitting laser, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), paper M3B.4

    Google Scholar 

  89. L. Vaissie, O.V. Smolski, A. Mehta, E.G. Johnson, High efficiency surface-emission laser with subwavelength antireflection structure. IEEE Photonics Technol. Lett. 17, 732–734 (2005)

    ADS  Google Scholar 

  90. P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, T. Suharal, Multifunctional gratings for surface-emitting lasers: design and implementation. Appl. Opt. 42, 4847–4854 (2003)

    ADS  Google Scholar 

  91. G. Witjaksono, S. Li, J.L. Lee, D. Botez, W.K. Chan, Single-lobe, surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase. Appl. Phys. Lett. 83, 5365–5367 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Grote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grote, N., Möhrle, M., Ortsiefer, M. (2017). Laser Components. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_3

Download citation

Publish with us

Policies and ethics