Skip to main content

Experimental Probes for Ion Dynamics

  • Chapter
  • First Online:
Dynamics of Glassy, Crystalline and Liquid Ionic Conductors

Part of the book series: Topics in Applied Physics ((TAP,volume 132))

  • 1410 Accesses

Abstract

Impedance Spectroscopy (IS) is by far the most commonly used technique to investigate experimentally the dynamic response of mobile ions in ionic conductors. Although other techniques, like NMR, light scattering, and neutron scattering, are also used to gain some insights into the ion diffusion process, they are mainly useful to probe high frequency dynamics since their spectral range is much more limited than in the case of IS. Due to its unparalleled broad frequency ν (or time t) range, IS is an ideal tool to study the dynamics of species with electric charge (mobile or bound) in materials [1]. It is based on the interaction of the electric charge of the species inside the sample with an applied electric field, and essentially consists of measuring the magnitude of this interaction and its characteristic frequency or time scale. Nowadays, by combining different experimental techniques, the total frequency range spans from a few nHz (τ ~ 1 year) to above 1 THz (τ ~ 10−1 ps) [2–7]. Thus, we will focus here on the use of IS and pay particular attention to its applications to measurements of the electrical response of ionically conducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Kremer, A. Schönhals (ed.), Broadband Dielectric Spectroscopy (Springer Science & Business Media, 2012), p. 729

    Google Scholar 

  2. J. Wong, C. Angell, Glass: Structure by Spectroscopy (Dekker, New York, 1976), p. 750

    Google Scholar 

  3. H. Wagner, R. Richert, Polymer (Guildf). 38, 255 (1997)

    Google Scholar 

  4. R. Richert, in Advances Chemical Physics, ed. by S.A. Rice, A.R. Dinner (Wiley, Hoboken, 2015), pp. 101–195

    Google Scholar 

  5. U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non Cryst. Solids 235–237, 173 (1998)

    Article  Google Scholar 

  6. J.G. Berberian, E. King, J. Non Cryst. Solids 305, 10 (2002)

    Article  CAS  Google Scholar 

  7. M.R. Pradel, A.G. Taillades, C. Cramer, Solid State Ionics 105, 139 (1998)

    Google Scholar 

  8. J.R. Macdonald, Ann. Biomed. Eng. 20, 289 (1992)

    Article  CAS  Google Scholar 

  9. J.R.M. Evgenij Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, KGaA, 2005)

    Google Scholar 

  10. J.R. Macdonald, W.R. Kenan, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, 1987), p. 368

    Google Scholar 

  11. R. Richert, Phys. A Stat. Mech. Its Appl. 287, 26 (2000)

    Article  CAS  Google Scholar 

  12. P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett. 78, 2995 (1997)

    Article  CAS  Google Scholar 

  13. F. Kremer, J. Non Cryst. Solids 305, 1 (2002)

    Article  CAS  Google Scholar 

  14. R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)

    Article  CAS  Google Scholar 

  15. F.I. Mopsik, Rev. Sci. Instrum. 55, 79 (1984)

    Article  Google Scholar 

  16. F. Qi, T. El Goresy, R. Böhmer, A. Döß, G. Diezemann, G. Hinze, H. Sillescu, T. Blochowicz, C. Gainaru, E. Rössler, H. Zimmermann, J. Chem. Phys. 118, 7431 (2003)

    Google Scholar 

  17. R. Nozaki, S. Mashimo, J. Chem. Phys. 87, 2271 (1987)

    Article  CAS  Google Scholar 

  18. A. Rivera, J. Santamarıa, C. León, T. Blochowicz, C. Gainaru, E.A. Rössler, Appl. Phys. Lett. 82, 2425 (2003)

    Google Scholar 

  19. J.R. Macdonald, J. Chem. Phys. 61, 3977 (1974)

    Article  CAS  Google Scholar 

  20. C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization, Vol. II: Dielectrics in Time-Dependent Fields (Elsevier, Amsterdam, 1978)

    Google Scholar 

  21. J.R. Macdonald, J. Electrochem. Soc. 124, 1022 (1977)

    Article  CAS  Google Scholar 

  22. J.R. Macdonald, J. Electroanal. Chem. Interfacial Electrochem. 53, 1 (1974)

    Article  CAS  Google Scholar 

  23. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  24. A. Jonscher, Dielectric Relaxation in Solids (Chelsea, London, 1983)

    Google Scholar 

  25. C. Moynihan, Solid State Ion. 105, 175 (1998)

    Article  CAS  Google Scholar 

  26. K.L. Ngai, C.T. Moynihan, MRS Bull. 23, 51 (1998)

    Article  CAS  Google Scholar 

  27. C.T. Moynihan, J. Non Cryst. Solids 172–174, 1395 (1994)

    Article  Google Scholar 

  28. I.M. Hodge, K.L. Ngai, C.T. Moynihan, J. Non Cryst. Solids 351, 104 (2005)

    Article  CAS  Google Scholar 

  29. B.A. Boukamp, Solid State Ionics 20, 31 (1986)

    Google Scholar 

  30. B. Boukamp, Solid State Ion. 62, 131 (1993)

    Article  CAS  Google Scholar 

  31. J.R. Macdonald, J. Chem. Phys. 102, 6241 (1995)

    Article  CAS  Google Scholar 

  32. B. Boukamp, Solid State Ion. 169, 65 (2004)

    Article  CAS  Google Scholar 

  33. J. Macdonald, Phys. Rev. B 66, 064305 (2002)

    Article  Google Scholar 

  34. R.F. Klie, J.P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N.D. Browning, S.T. Pantelides, S.J. Pennycook, Nature 435, 475 (2005)

    Article  CAS  Google Scholar 

  35. Z. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, Y. Ikuhara, Nature 479, 380 (2011)

    Article  CAS  Google Scholar 

  36. J. Maier, J. Electrochem. Soc. 134, 1524 (1987)

    Article  CAS  Google Scholar 

  37. J. Maier, Prog. Solid State Chem. 23, 171 (1995)

    Article  CAS  Google Scholar 

  38. J. Maier, Berichte Der Bunsengesellschaft Für Phys. Chemie 88, 1057 (1984)

    Article  CAS  Google Scholar 

  39. W.D. Kingery, J. Am. Ceram. Soc. 57, 74 (1974)

    Article  CAS  Google Scholar 

  40. X. Guo, R. Waser, Prog. Mater. Sci. 51, 151 (2006)

    Article  CAS  Google Scholar 

  41. J. Maier, Berichte Der Bunsengesellschaft Für Phys. Chemie 90, 26 (1986)

    Article  CAS  Google Scholar 

  42. X. Guo, J. Maier, J. Electrochem. Soc. 148, E121 (2001)

    Article  CAS  Google Scholar 

  43. X. Guo, W. Sigle, J. Fleig, J. Maier, Solid State Ion. 154–155, 555 (2002)

    Article  Google Scholar 

  44. M. Frechero, Sci. Rep. 5, 17229; doi: 10.1038/srep17229 (2015)

    Google Scholar 

  45. T. Dijk van, A.J. Burggraaf, Phys. Status Solid A Appl. Res. 63, 229 (1981)

    Google Scholar 

  46. R.de L. Kronig, H.A. Kramers, Zeitschrift Fuer Phys. 48, 174 (1928)

    Google Scholar 

  47. R.de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926)

    Google Scholar 

  48. M. Urquidi-Macdonald, J. Electrochem. Soc. 133, 2018 (1986)

    Article  CAS  Google Scholar 

  49. M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Electrochim. Acta 35, 1559 (1990)

    Article  CAS  Google Scholar 

  50. J.R. Macdonald, M.K. Brachman, Rev. Mod. Phys. 28, 393 (1956)

    Article  Google Scholar 

  51. B.A. Boukamp, Solid State Ionics 62, 131 (1993)

    Google Scholar 

  52. C. Leon, J.M. Martin, J. Santamaria, J. Skarp, G. Gonzalez-Diaz, F. Sanchez-Quesada, J. Appl. Phys. 79, 7830 (1996)

    Google Scholar 

  53. N. Bloembergen, E. Purcell, R. Pound, Phys. Rev. 73, 679 (1948)

    Article  CAS  Google Scholar 

  54. O. Kanert, Phys. Rep. 91, 183 (1982)

    Article  CAS  Google Scholar 

  55. D. Brinkmann, Prog. Nucl. Magn. Reson. Spectrosc. 24, 527 (1992)

    Article  CAS  Google Scholar 

  56. R. Böhmer, K.R. Jeffrey, M. Vogel, Prog. Nucl. Magn. Reson. Spectrosc. 50, 87 (2007)

    Article  Google Scholar 

  57. J. Bjorkstam, J. Listerud, M. Villa, Solid State Ion. 18–19, 117 (1986)

    Article  Google Scholar 

  58. M.S. Whittingham, B.G. Silbernagel, in Solid Electrolytes, ed. by P. Hagenmuller, W. Van Gool (Elsevier, 1978), pp. 93–108

    Google Scholar 

  59. E. Hahn, Phys. Rev. 80, 580 (1950)

    Article  Google Scholar 

  60. A. Kuhn, M. Kunze, P. Sreeraj, H.D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42, 2 (2012)

    Article  CAS  Google Scholar 

  61. D.C. Look, I.J. Lowe, J. Chem. Phys. 44, 2995 (1966)

    Article  CAS  Google Scholar 

  62. O.J. Żogal, R.M. Cotts, Phys. Rev. B 11, 2443 (1975)

    Article  Google Scholar 

  63. C. Brinkmann, S. Faske, B. Koch, M. Vogel, Zeitschrift Für Phys. Chemie 224, 1535 (2010)

    Article  CAS  Google Scholar 

  64. K.L. Ngai, J. Chem. Phys. 98, 6424 (1993)

    Article  CAS  Google Scholar 

  65. K. Ngai, C. León, J. Non Cryst. Solids 315, 124 (2003)

    Article  CAS  Google Scholar 

  66. A. Rivera, J. Sanz, Phys. Rev. B 70, 094301 (2004)

    Article  Google Scholar 

  67. M.A. París, J. Sanz, C. León, J. Santamaría, J. Ibarra, A. Várez, Chem. Mater. 12, 1694 (2000)

    Article  Google Scholar 

  68. C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaria, K.L. Ngai, Phys. Rev. Lett. 86, 1279 (2001)

    Article  Google Scholar 

  69. H.C. Torrey, Phys. Rev. 92, 962 (1953)

    Article  CAS  Google Scholar 

  70. W. Kuchler, P. Heitjans, A. Payer, R. Schollhorn, Solid State Ion. 70–71, 434 (1994)

    Article  Google Scholar 

  71. C.A. Sholl, J. Phys. C Solid State Phys. 14, 447 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Habasaki, J., León, C., Ngai, K.L. (2017). Experimental Probes for Ion Dynamics. In: Dynamics of Glassy, Crystalline and Liquid Ionic Conductors. Topics in Applied Physics, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-42391-3_3

Download citation

Publish with us

Policies and ethics