Skip to main content

Thrust-Assisted Perching and Climbing for a Bioinspired UAV

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Included in the following conference series:

Abstract

We present a multi-modal robot that flies, perches and climbs on outdoor surfaces such as concrete or stucco walls. Although the combination of flying and climbing mechanisms in a single platform extracts a weight penalty, it also provides synergies. In particular, a small amount of aerodynamic thrust can substantially improve the reliability of perching and climbing, allowing the platform to maneuver on otherwise risky surfaces. The approach is inspired by thrust-assisted perching and climbing observed in various animals including flightless birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video of SCAMP in operation is available at https://www.youtube.com/watch?v=bAhLW1eq8eM.

References

  1. Keennon, M.T., Grasmeyer, J.M.: Development of the black widow and microbat mavs and a vision of the future of mav design. In: AIAA International Air and Space Symposium and Exposition: The Next 100 Years, pp. 14–17 (2003)

    Google Scholar 

  2. Prior, S.D., Shen, S.-T., Erbil, M.A., Brazinskas, M., Mielniczek, W.: HALO the winning entry to the DARPA UAVForge challenge 2012. In: Marcus, A. (ed.) DUXU 2013, Part III. LNCS, vol. 8014, pp. 179–188. Springer, Heidelberg (2013)

    Google Scholar 

  3. Kovač, M., Germann, J., Hürzeler, C., Siegwart, R.Y., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2010)

    Google Scholar 

  4. Lussier Desbiens, A., Asbeck, A.T., Cutkosky, M.R.: Landing, perching and taking off from vertical surfaces. Int. J. Rob. Res. 30(3), 355–370 (2011)

    Article  Google Scholar 

  5. Kovac, M., Germann, J.M., Hurzeler, C., Siegwart, R., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2009)

    Article  Google Scholar 

  6. Anderson, M.L., Perry, C.J., Hua, B.M., Olsen, D.S., Parcus, J.R., Pederson, K.M., Jensen, D.D.: The sticky-pad plane and other innovative concepts for perching UAVs. In: 47th AIAA Aerospace Sciences Meeting (2009)

    Google Scholar 

  7. Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.: A perching mechanism for flying robots using a fibre-based adhesive. In: IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  8. Kalantari, A., Mahajan, K., Ruffatto III., D., Spenko, M.: Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4669–4674. IEEE (2015)

    Google Scholar 

  9. Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4663–4668. IEEE (2015)

    Google Scholar 

  10. Liu, Y., Sun, G., Chen, H.: Impedance control of a bio-inspired flying and adhesion robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3564–3569. IEEE (2014)

    Google Scholar 

  11. Clark, J., Goldman, D., Lin, P.C., Lynch, G., Chen, T., Komsuoglu, H., Full, R.J., Koditschek, D.E.: Design of a bio-inspired dynamical vertical climbing robot. In: Robotics: Science and Systems (2007)

    Google Scholar 

  12. Asbeck, A., Kim, S., Cutkosky, M.R., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. Int. J. Rob. Res. 25, 14 (2006)

    Article  Google Scholar 

  13. Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J.: Biologically inspired climbing with a hexapedal robot. J. Field Rob. 25, 223–242 (2008)

    Article  Google Scholar 

  14. Estrada, M., Hawkes, E.W., Christensen, D.L., Cutkosky, M.R., et al.: Perching and vertical climbing: Design of a multimodal robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4215–4221. IEEE (2014)

    Google Scholar 

  15. Myeong, W., Jung, K., Jung, S., Jung, Y., Myung, H.: Development of a drone-type wall-sticking and climbing robot. In: 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 386–389. IEEE (2015)

    Google Scholar 

  16. Dickson, J.D., Clark, J.E.: Design of a multimodal climbing and gliding robotic platform. IEEE/ASME Trans. Mechatron. 18(2), 494–505 (2013)

    Article  Google Scholar 

  17. Mellinger, D., Shomin, M., Kumar, V.: Control of quadrotors for robust perching and landing. In: Proceedings of the International Powered Lift Conference, pp. 119–126 (2010)

    Google Scholar 

  18. Thomas, J., Pope, M., Loianno, G., Hawkes, E.W., Estrada, M.A., Jiang, H., Cutkosky, M.R., Kumar, V.: Aggressive flight for perching on inclined surfaces. J. Mech. Rob. 8(5), Article ID. 051007 (2016). doi:10.1115/1.4032250

    Google Scholar 

  19. Dai, Z., Gorb, S.N., Schwarz, U.: Roughness-dependent friction force of the tarsal claw system in the beetle pachnoda marginata (coleoptera, scarabaeidae). J. Exp. Biol. 205(16), 2479–2488 (2002)

    Google Scholar 

  20. Gorb, S.N.: Biological attachment devices: exploring nature’s diversity for biomimetics. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 366(1870), 1557–1574 (2008)

    Article  Google Scholar 

  21. Yanoviak, S.P., Dudley, R., Kaspari, M.: Directed aerial descent in canopy ants. Nature 433(7026), 624–626 (2005)

    Article  Google Scholar 

  22. Yanoviak, S.P., Munk, Y., Kaspari, M., Dudley, R.: Aerial manoeuvrability in wingless gliding ants (cephalotes atratus). Proc. Roy. Soc. London B: Biol. Sci. 277, 2199–2204 (2010). doi:10.1098/rspb.2010.0170

    Article  Google Scholar 

  23. McCAY, M.G.: Aerodynamic stability and maneuverability of the gliding frog polypedates dennysi. J. Exp. Biol. 204(16), 2817–2826 (2001)

    Google Scholar 

  24. Paskins, K.E., Bowyer, A., Megill, W.M., Scheibe, J.S.: Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. J. Exp. Biol. 210(Pt. 8), 1413–1423 (2007)

    Article  Google Scholar 

  25. Byrnes, G., Lim, N.T.L., Spence, A.J.: Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proc. Roy. Soc. B: Biol. Sci. 275, 1007–1013 (2008)

    Article  Google Scholar 

  26. Fujita, M., Kawakami, K., Higuchi, H.: Hopping and climbing gait of japanese pygmy woodpeckers (picoides kizuki). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 148(4), 802–810 (2007)

    Article  Google Scholar 

  27. Dial, K.P.: Wing-assisted incline running and the evolution of flight. Science 299(5605), 402–404 (2003)

    Article  Google Scholar 

  28. Bundle, M.W., Dial, K.P.: Mechanics of wing-assisted incline running (WAIR). J. Exp. Biol. 206, 4553–4564 (2003)

    Article  Google Scholar 

  29. Norberg, R.Å.: Why foraging birds in trees should climb and hop upwards rather than downwards. Ibis 123(3), 281–288 (1981)

    Article  MathSciNet  Google Scholar 

  30. Okamura, A.M., Cutkosky, M.R.: Feature detection for haptic exploration with robotic fingers. Int. J. Rob. Res. 20(12), 925–938 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by NSF IIS-1161679 and ARL MAST MCE 15-4. We gratefully acknowledge the help of H. Jiang, C. Kimes, W. Roderick and C. Kerst in conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan T. Pope .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pope, M.T., Cutkosky, M.R. (2016). Thrust-Assisted Perching and Climbing for a Bioinspired UAV. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics