Skip to main content

Sustainability Analysis of Industrial Processes

  • Conference paper
  • First Online:
Optimization and Decision Support Systems for Supply Chains

Part of the book series: Lecture Notes in Logistics ((LNLO))

Abstract

Our planet has been extensively impacted by the enormous consumption of natural resources and due to the high level of emissions coming from the productive systems. This situation is imposing severe burdens to the planet, leading to environmental disturbances and a huge level of pollution, which is causing a significant increase of human diseases. Sustainability Analysis at the industrial process level is mandatory to accomplish the sustainable development among nations. The aim of this chapter is to clearly present the sustainability agenda across the past decades and integrate that concept in the industrial processes analysis. For that, metrics and tools available to assess and improve industrial processes in terms of sustainability are presented. Some examples of the application of these tools are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D. T., & Shonnard, D. R. (2002). Green engineering—Environmentally conscious design of chemical processes. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Almeida, F. (2007). Os Desafios da Sustentabilidade—uma ruptura urgente. Amsterdam: Campus-Elsevier.

    Google Scholar 

  • Brundtland, G. H. (1987). ONU: Our Common Future Report. Acedido em Julho de 2009. http://www.un-documents.net/wced-ocf.htm

  • Cabezas, H., Bare, J. C., & Mallick, S. K. (1997). Pollution prevention with chemical process simulators: The generalized waste reduction (WAR) algorithm. Computers & Chemical Engineering, 21, S305–S310.

    Article  Google Scholar 

  • Carvalho, A. (2009). Design of sustainable chemical processes: Systematic retrofit analysis generation and evaluation of alternatives. Ph.D. thesis, IST.

    Google Scholar 

  • Carvalho, A., Gani, R., & Matos, H. A. (2008). Design of sustainable chemical process: Systematic retrofit analysis and evaluation of alternatives. Process Safety and Environment Protection, 86, 328–346.

    Article  Google Scholar 

  • Carvalho, A., Matos, H. A., & Gani, R. (2013). SustainPro—A tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Computers and Chemical Engineer, 50, 8–27.

    Article  Google Scholar 

  • Carvalho, A., Mendes, A. N., Mimoso, A. F., & Matos, H. A. (2014). From a literature review to a framework for environmental impact assessment index. Journal of Cleaner Production, 64, 36–62.

    Article  Google Scholar 

  • CCPS. (2009). Inherently safer chemical processes: A life cycle approach (2nd ed., p. 411). Wiley-AIChE.

    Google Scholar 

  • Defra. (2008). The sustainable development indicators in your pocket. Defra Publications.

    Google Scholar 

  • Dewulf, J., & van Langenhove, H. (2006). Renewables-based technology: Sustainability assessment. New York: Wiley.

    Google Scholar 

  • Dow Chemicals. (1998). Dow’s chemical exposure index guide. New York, USA: AIChE.

    Google Scholar 

  • Dow Fire & Explosion Index. (1987). Hazard classification guide (6th ed.). Midland, MI: Dow Chemical.

    Google Scholar 

  • Edwards, D. W., & Lawrence, D. (1993). Assessing the inherent safety of chemical process routes: Is there a relation between plant costs and inherent safety? Trans IChemE, Part B, Process Safety and Environmental Protection, 71(B), 252–258.

    Google Scholar 

  • EPA. (1995). Compilation of air pollutant emission factors, Volume I: Stationary point and area sources. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency.

    Google Scholar 

  • Francisco, A. O., & Matos, H. A. (2004). Multiperiod synthesis and operational planning of utility systems with environmental concerns. Computers & Chemical Engineering, 28(5), 745–754.

    Article  Google Scholar 

  • Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & van Zelm, R. (2009). ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level.

    Google Scholar 

  • Goedkoop, M., & Spriensma, R. (2001). The Eco-indicator 99: A damage oriented method for life cycle impact assessment: Methodology report. Amersfoort: PRé Consultant.

    Google Scholar 

  • Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A., et al. (2001). Life cycle assessment: An operational guide to the ISO standards. Centre of Environmental Science, Leiden University, CML.

    Google Scholar 

  • Hassim, M. H., & Edwards, D. W. (2006). Development of a methodology for assessing inherent occupational health hazards. Process Safety and Environmental Protection, 84(B5), 378–390.

    Google Scholar 

  • Heijungs, R., Guinée, J. B., Huppes, G., & Lankreijer, R. M. (1992). Environmental Life Cycle Assessment of Products: Guide. Report 9266, Leiden, The Netherlands: Centre of Environmental Science (CML).

    Google Scholar 

  • Heikkila, A.-M. (1999). Inherent safety in process plant design—An index-based approach. Ph.D. thesis, VTT Automation, Espoo, Finland.

    Google Scholar 

  • IChemE. (2007). A roadmap for 21st century chemical engineering. Londres: IChemE.

    Google Scholar 

  • ISO 14040. (2006). Environmental management—Life cycle assessment—Principles and framework. International Organization of Standardization.

    Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., et al. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. International Journal of LCA, 8(6), 324–330.

    Article  Google Scholar 

  • Khan, F. I., & Amyotte, P. R. (2004). Integrated Inherent Safety Index (I2SI): A tool for inherent safety evaluation. Process Safety Process, 23, 2.

    Google Scholar 

  • Martins, A. A., Mata, T. M., Costa, C. A. V., & Sikdar. S. K. (2007). Framework for sustainability metrics. Industrial & Engineering Chemistry Research, 46, 2962–2973.

    Google Scholar 

  • Meadows, D. H., Meadows, D. L., & Randers, J. (1992). Beyond the limits. USA: Chelsea Green Publishing Co.

    Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, III, W. W. (1972). The limits to growth. London: Earth Islands.

    Google Scholar 

  • OECD. (2012). Material resources, productivity and the environment. www.oecd.org/greengrowth. Accessed in September 2015.

  • PRO/II. (1992). Casebook, Simulation Sciences Inc.

    Google Scholar 

  • Ramôa Ribeiro, F. (2009). A Energia da Razão- Por uma Sociedade com menos CO2. Gradiva.

    Google Scholar 

  • Relvas, S., Matos, H. A., Barbosa-Póvoa, A. P., & Fialho, J. (2007). Reactive scheduling framework for a multiproduct pipeline with inventory management. Industrial Engineering and Chemistry Research, 46(17), 5659–5672.

    Article  Google Scholar 

  • Sikdar, S. K., & El-Halwagi, M. (2001). Process design tools for the environment. London: Taylor & Francis.

    Google Scholar 

  • Tyler, B. J. (1985). Using the mond index to measure inherent hazards. Plant/Operations Progress, 4(3), 172–175.

    Google Scholar 

  • UNFCCC. (2015). http://unfccc.int/2860.php. Accessed in September 2015.

  • WRI. (2005). http://www.wri.org/our-work. Accessed in September 2015.

  • Young, M. D., & Cabezas, H. (1999). Design sustainable processes with simulation: The waste reduction (WAR) algorithm. Computers & Chemical Engineering, 23, 1477–2491.

    Article  Google Scholar 

  • Young, D., Scharp, R., & Cabezas, H. (2000). The waste reduction (WAR) algorithm: Environmental impacts, energy consumption and engineering economics. Wast Management, 20, 605–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique A. Matos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Matos, H.A., Carvalho, A. (2017). Sustainability Analysis of Industrial Processes. In: Póvoa, A., Corominas, A., de Miranda, J. (eds) Optimization and Decision Support Systems for Supply Chains. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-319-42421-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42421-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42419-4

  • Online ISBN: 978-3-319-42421-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics