Skip to main content

The Benefits of Convergence Through Fiber-Wireless Integration and Networking

  • Chapter
  • First Online:
Fiber-Wireless Convergence in Next-Generation Communication Networks

Part of the book series: Optical Networks ((OPNW))

  • 1355 Accesses

Abstract

A multi-tier radio access network (RAN) combining the strength of fiber-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fiber (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio access technologies (RATs) will be used to deliver wireless services with high capacity, high link speed, and low latency. The multi-tier RAN will improve the cell edge performance in an integrated heterogeneous environment enabled by fiber-wireless integration and networking for mobile fronthaul/backhaul, resource sharing, and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, for this multi-tier radio access architecture, carrier aggregation (CA) among multiple frequency bands can be easily achieved and seamless handover can be guaranteed through coordinated multi-point (CoMP) transmission among various cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF, regardless of the underlying network topology or protocol. In terms of user’s experience, the future-proof approach achieves the goals of increased system capacity and link speed, reduced latency, and continuous heterogeneous cell coverage, while overcoming the bandwidth crunch in wireless communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White paper, Cisco visual networking index: forecast and methodology, 2012–2017, Cisco VNI Report, May 2013. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

  2. Rappaport TS et al (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349

    Article  Google Scholar 

  3. DOCOMO 5G White Paper, “5G Radio access: requirement, concept, and technologies”. https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_Paper.pdf

  4. Bertenyi B (2014) 3GPP system standards heading into the 5G era. EURESCOM Message. http://www.3gpp.org/news-events/3gpp-news/1614-sa_5g

  5. IMT-2020 Promotion Group (2014) White Paper, 5G Vision and Requirements. http://euchina-ict.eu/wp-content/uploads/2015/03/IMT-20205GPG-WHITE-PAPER-ON-5G-VISION-AND-REQUIREMENTS_V1.0.pdf

  6. Liu C, Cvijetic N, Sundaresan K, Jiang M, Rangarajan S, Wang T, Chang G-K (2013) A novel in-building small-cell backhaul architecture for cost-efficient multi-operator multi-service coexistence. In: IEEE/OSA optical fiber communication conference (OFC)

    Google Scholar 

  7. MEF 22.1.1, Mobile Backhaul Phase 2, Amendment 1, Jan 27, 2014

    Google Scholar 

  8. China Mobile, C-RAN white paper, 2011

    Google Scholar 

  9. Common Public Radio Interface (CPRI) specification, V6.1, June 2014

    Google Scholar 

  10. Open Base Station Architecture Initiative—BTS System Reference Document, V2.0, 2006

    Google Scholar 

  11. Miyamoto K, Kuwano S, Terada J, Otaka A (2015) Split-PHY processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul. In: IEEE/OSA optical fiber communications conference (OFC), pp 22–26

    Google Scholar 

  12. Cheng L, Liu C, Zhu M, Wang J, Chang G-K (2013) Centralized small-cell radio access network with shared millimeter-wave radio-over-fiber resources. In: IEEE global communications conference (GLOBECOM), pp 2448–2453

    Google Scholar 

  13. Chang G-K, Liu C, Zhang L (2013) Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies. In: IEEE international communications conference (ICC)

    Google Scholar 

  14. Oliveira RS, Frances CRL, Costa JCWA, Viana DFR, Lima M, Teixeira A (2014) Analysis of the cost-effective digital radio over fiber system in the NG-PON2 context. In: 16th international telecommunications network strategy and planning symposium (Networks), pp 1, 6, 17–19

    Google Scholar 

  15. Chang G-K, Chowdhury A, Jia Z, Chien H-C, Huang M-F, Yu J, Ellinas G (2009) Key technologies of WDM-PON for future converged optical broadband access networks. IEEE/OSA J Opt Commun Netw 1(4):C35–C50

    Article  Google Scholar 

  16. Xu M, Wang J, Zhu M, Cheng L, Alfadhli YM, Dong Z, Chang G-K (2014) Non-overlapping downlink and uplink wavelength reuse in WDM-PON employing microwave photonic techniques. In: European conference on optical communication (ECOC), Sep. 2014, paper P. 7. 17

    Google Scholar 

  17. Cvijetic N (2012) OFDM for next-generation optical access networks. IEEE/OSA J Lightwave Technol 30(4):384–398

    Google Scholar 

  18. Zhang J, Yu J, Li F, Chi N, Dong Z, Li X (2013) 11 × 5 × 9.3 Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection. OSA Opt Exp 21(16):18842–18848

    Article  Google Scholar 

  19. Buset JM, El-Sahn ZA, Plant DV (2013) Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON. IEEE Photon Technol Lett 25(15):1435–1438

    Google Scholar 

  20. Lopez-Perez D, Guvenc I, de la Roche G, Kountouris M, Quek TQS, Zhang J (2011) Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Commun 18(3):22–30

    Article  Google Scholar 

  21. Irmer R, Droste H, Marsch P, Grieger M, Fettweis G, Brueck S, Mayer H-P, Thiele L, Jungnickel V (2011) Coordinated multipoint: concepts, performance, and field trial results. IEEE Commun Mag 49(2):102–111

    Article  Google Scholar 

  22. Zhu M, Zhang L, Wang J, Cheng L, Liu C, Chang G-K (2013) Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightwave Technol 31(23):3614–3620

    Article  Google Scholar 

  23. Yu J, Jia Z, Yi L, Su Y, Chang G-K, Wang T (2006) Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photon Technol Lett 18(1):265–267

    Article  Google Scholar 

  24. Zhao H et al (2013) 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In: IEEE international communications conference (ICC), June 2013, pp 516–567

    Google Scholar 

  25. Azar Y et al (2013) 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In: IEEE international communications conference (ICC), June 2013, pp 5143–5147

    Google Scholar 

  26. Dehos C, González JL, Domenico AD, Kténas D, Dussopt L (2014) Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Commun Mag 52(9):88–95

    Article  Google Scholar 

  27. Pasandi MEM, Sisto MM, Doucet S, Kim Y, Rusch LA, LaRochelle S (2009) Low-distortion optical null-steering beamformer for radio-over-fiber OFDM systems. IEEE/OSA J Lightwave Technol 27:5173–5182

    Article  Google Scholar 

  28. Cao Z, Lu R, Wang Q, Tessema N, Jiao Y, van den Boom HPA, Tangdiongga E, Koonen AMJ (2014) Cyclic additional optical true time delay for microwave beam steering with spectral filtering. OSA Opt Lett 39:3402–3405

    Article  Google Scholar 

  29. Li X, Dong Z, Yu J, Chi N, Shao Y, Chang GK (2012) Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2 × 2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. OSA Opt Lett 37:5106–5108

    Article  Google Scholar 

  30. Yu J, Li X, Chi N (2013) Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. OSA Opt Express 21:22885–22904

    Article  Google Scholar 

  31. Zhang J, Yu J, Chi N, Dong Z, Li X, Chang G-K (2013) Multichannel 120-Gb/s data transmission over 2x2 MIMO fiber-wireless link at W-band. IEEE Photon Technol Lett 25(8):780–783

    Article  Google Scholar 

  32. Dong Z, Yu J, Li X, Chang GK, Cao Z (2013) Integration of 112-Gb/s PDM-16QAM wireline and wireless data delivery in millimeter wave RoF system. In: IEEE/OSA optical fiber communication conference (OFC) 2013, Anaheim, California, OM3D.2

    Google Scholar 

  33. Li F, Cao Z, Li X, Dong Z, Chen L (2013) Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency. IEEE/OSA J Lightwave Technol 31(14):2394–2399

    Article  Google Scholar 

  34. Yu J, Zhang J, Xiao J (2014) 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing. In: European conference on optical communication (ECOC), W.3.6.6

    Google Scholar 

  35. Li X, Yu J, Zhang J, Dong Z, Chi N (2013) Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing. OSA Opt Lett 38(12):2125–2127

    Article  Google Scholar 

  36. Cheng L, Gul M, Ng’oma A, Lu F, Ma X, Chang G (2015) High-diversity millimeter-wave CoMP transmission based on centralized SFBC in radio-over-fiber systems. In: IEEE/OSA optical fiber communication conference (OFC), paper W3F.5

    Google Scholar 

  37. Cheng L, Zhu M, Gul MMU, Ma X, Chang G-K (2014) Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul. IEEE/OSA J Lightwave Technol 32(10):1907–1914

    Article  Google Scholar 

  38. Li X, Yu J, Zhang J, Dong Z, Li F, Chi N (2013) A 400G optical wireless integration delivery system. OSA Opt Express 21(16):18812–18819

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gee-Kung Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, GK., Cheng, L. (2017). The Benefits of Convergence Through Fiber-Wireless Integration and Networking. In: Tornatore, M., Chang, GK., Ellinas, G. (eds) Fiber-Wireless Convergence in Next-Generation Communication Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42822-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42822-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42820-8

  • Online ISBN: 978-3-319-42822-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics