Skip to main content

Parental Responsibility and the Principle of Procreative Beneficence in Light of Assisted Reproductive Technologies

  • Chapter
  • First Online:
Parental Responsibility in the Context of Neuroscience and Genetics

Part of the book series: International Library of Ethics, Law, and the New Medicine ((LIME,volume 69))

  • 475 Accesses

Abstract

The aim of this article is to investigate whether techniques used for artificial reproduction safeguard or promote the future child’s welfare, and whether they are capable of offering potential future children the best possible chance for the best life, in keeping with guidelines derived from the Principle of Procreative Beneficence. This analysis will be important for discerning the parental responsibility of couples or single reproducers who plan to use or have used any of these techniques, and also for those who defend the Principle of Procreative Beneficence, which implicitly entails the use of techniques of assisted human reproduction. The paper concludes that prospective parents should be informed not only of the specific level of risk and potential damages associated with each IVF technique, but also of the fact that given the available evidence none of the standard IVF techniques can be considered to be risk free, there is reason to believe that none of these techniques can be reconciled with the responsibility of prospective parents to the promote welfare of future children and/or to offer them the best possible life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that the importance of the new epigenetic model of development for discussions of IVF techniques does not depend on the highly controversial status of the embryo as a person. Regardless of when we believe personal status is achieved, the epigenetic model changes how we understand the genetic and developmental basis of the health of future children, and this is the relevant issue under discussion here.

  2. 2.

    In fact, sensitivity is so high during the periconceptional period that deficiencies or excesses of a range of macro and micronutrients during the final stages of oocyte growth and post-fertilisation development can lead to impairments in foetal development and long-term offspring health (Sinclairand Watkins 2013).

  3. 3.

    The data can be consulted at https://www.sartcorsonline.com/rptCSR_PublicMultYea-r.aspx?ClinicPKID=0

References

  • Alikani, M., G. Calderon, G. Tomkin, J. Garrisi, M. Kokot, and J. Cohen. 2000. Cleavage anomalies in early human embryos and survival after prolonged culture in vitro. Human Reproduction 15: 2634–2643.

    Article  Google Scholar 

  • Anckaert, E., M. DeRycke, and J. Smitz. 2013. Culture of oocytes and risk of imprinting defects. Human Reproduction Update 19(1): 52–66.

    Article  Google Scholar 

  • CDC – Centers for Disease Control and Prevention. 2013. 2011 Assisted reproductive technology, Fertility clinic success rates report. Resource document. Division of Reproductive Health. http://www.cdc.gov/art/ART2011/PDFs/ART_2011_Clinic_Report-Full.pdf. Accessed 24 Sept 2014.

  • Ceelen, M. 2007. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. Journal of Clinical Endocrinology & Metabolism 92: 3417–3423.

    Article  Google Scholar 

  • Champagne, F.A. 2012. Interplay between social experiences and the genome: Epigenetic consequences for behaviour. Advances in Genetics 77: 33–57.

    Google Scholar 

  • Davies, M.J., V.M. Moore, K.J. Willson, P. Van Essen, K. Priest, H. Scott, E.A. Haan, and A. Chan. 2012. Reproductive technologies and the risk of birth defects. New England Journal of Medicine 366: 1803–1813.

    Article  Google Scholar 

  • Dempster, E.L., R. Pidsley, L.C. Schalkwyk, S. Owens, A. Georgiades, F. Kane, S. Kalidindi, M. Picchioni, E. Kravariti, T. Toulopoulou, R.M. Murray, and J. Mill. 2011. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics 20(24): 4786–4796.

    Article  Google Scholar 

  • Denomme, M.M., and M.R. Mann. 2012. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144(4): 393–409.

    Article  Google Scholar 

  • Desmyttere, S., M. Bonduelle, J. Nekkebroeck, M. Roelants, I. Liebaers, and J. De Schepper. 2009. Growth and health outcome of 102 2-year-old children conceived after preimplantation genetic diagnosis or screening. Early Human Development 85(12): 755–759.

    Article  Google Scholar 

  • Diario ABC – Noticias Salud. 2015. Los niños ‘probeta’ no tienen más problemas de salud que los ‘naturales’. Resource Document. http://www.abc.es/salud/noticias/20150131/abci-seguridad-fertilizacion-vitro-201501301439.html. Accesed 2 Feb 2015.

  • Dupont, C., and C. Sifer. 2012. A review of outcome data concerning children born following assisted reproductive technologies. ISRN Obstetrics and Gynecology 2012: 405382.

    Article  Google Scholar 

  • el Hajj, N., and T. Haaf. 2013. Epigenetic disturbances in in vitro cultured gametes and embryos: Implications for human assisted reproduction. Fertility and Sterility 99(3): 632–641.

    Article  Google Scholar 

  • Ertzeid, G., and R. Storeng. 2001. The impact of ovarian stimulation on implantation and fetal development in mice. Human Reproduction 16: 221–225.

    Article  Google Scholar 

  • Feuer, S.K., L. Camarano, and P.F. Rinaudo. 2013. ART and health: Clinical outcomes and insights on molecular mechanisms from rodent studies. Molecular Human Reproduction 19(4): 189–204.

    Article  Google Scholar 

  • Gardner, D.K., R. Hamilton, B. McCallie, W.B. Schoolcraft, and M.G. Katz-Jaffe. 2013. Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction 146(1): 49–61.

    Article  Google Scholar 

  • Gluckman, P.D., M.A. Hanson, T. Buklijas, F.M. Low, and A.S. Beedle. 2009. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nature Reviews Endocrinology 5(7): 401–408.

    Article  Google Scholar 

  • Güell, F. 2013. El estatuto biológico y ontológico del embrión humano: el paradigma epigenético del siglo XXI desde la teoría de la esencia de Xavier Zubiri. Berna: Peter Lang.

    Book  Google Scholar 

  • Hansen, M., C. Bower, E. Milne, N. De Klerk, and J.J. Kurinczuk. 2005. Assisted reproductive technologies and the risk of birth defects – A systematic review. Human Reproduction 20(2): 328–338.

    Article  Google Scholar 

  • Hansen, M., J.J. Kurinczuk, E. Milne, N. De Klerk, and C. Bower. 2013. Assisted reproductive technology and birth defects: A systematic review and meta-analysis. Human Reproduction Update 19(4): 330–353.

    Article  Google Scholar 

  • Henningsen, A.A., M. Gissler, R. Skjaerven, C. Bergh, A. Tiitinen, L.B. Romundstad, U.B. Wennerholm, O. Lidegaard, A. Nyboe Andersen, J.L. Forman, and A. Pinborg. 2015. Trends in perinatal health after assisted reproduction: A nordic study from the CoNARTaS group. Human Reproduction 30: 710–716. doi:10.1093/humrep/deu345.

    Article  Google Scholar 

  • Hvidtjorn, D., J. Grove, D.E. Schendel, M. Vaeth, E. Ernst, L.F. Nielsen, and P. Thorsen. 2006. Cerebral palsy among children born after in vitro fertilization: The role of preterm delivery – A population-based, cohort study. Pediatrics 118: 475–482.

    Article  Google Scholar 

  • Jablonka, E., and M. Lamb. 2005. Evolution in four dimensions – Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kirkegaard, K., J.J. Hindkjaer, and H.J. Ingerslev. 2012. Human embryonic development after blastomere removal: A time-lapse analysis. Human Reproduction 27(1): 97–105.

    Article  Google Scholar 

  • Kläver, R., A. Bleiziffer, K. Redmann, C. Mallidis, S. Kliesch, and J. Gromoll. 2012. Routine cryopreservation of spermatozoa is safe-evidence from the DNA methylation pattern of nine spermatozoa genes. Journal of Assisted Reproduction and Genetics 29(9): 943–950.

    Article  Google Scholar 

  • Kohda, T., and F. Ishino. 2013. Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philosophical Transaction Royal Society of London B 368: 20120353.

    Article  Google Scholar 

  • Krisher, R.L. 2004. The effect of oocyte quality on development. Journal of Animal Science 82: E14–E23.

    Google Scholar 

  • Lazaraviciute, G., M. Kauser, S. Bhattacharya, P. Haggarty, and S. Bhattacharya. 2014. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Human Reproduction Update 20(6): 840–852.

    Article  Google Scholar 

  • Lee, E.R., and R.S. Alisch. 2012. Early-life disruption of epigenetic marks may contribute to the origins of mental illness. Epigenomics 4(4): 355–357.

    Article  Google Scholar 

  • Leeson, P., and T. Baskaran. 2013. “Assisted” reshaping of the fetal heart? Circulation 128: 1398–1399.

    Article  Google Scholar 

  • Lie, R.T., A. Lyngstadass, K.H. Ørstavik, L.S. Bakketeig, G. Jacobsen, and T. Tanbo. 2005. Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. International Journal of Epidemiology 34(3): 696–701.

    Article  Google Scholar 

  • Lister, R., E.A. Mukamel, J.R. Nery, M. Urich, C.A. Puddifoot, N.D. Johnson, J. Lucero, Y. Huang, A.J. Dwork, M.D. Schultz, M. Yu, J. Tonti-Filippini, H. Heyn, S. Hu, J.C. Wu, A. Rao, M. Esteller, C. He, F.G. Haghighi, T.J. Sejnowski, M.M. Behrens, and J.R. Ecker. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341: 6146.

    Article  Google Scholar 

  • Lorthongpanich, C., L.F. Cheow, S. Balu, S.R. Quake, B.B. Knowles, W.F. Burkholder, D. Solter, and D.M. Messerschmidt. 2013. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341: 1110–1112.

    Article  Google Scholar 

  • Louis, G.M.B., M.A. Cooney, C.D. Lynch, and A. Handal. 2008. Periconception window: Advising the pregnancy-planning couple. Fertility and Sterility 89: e119–e121.

    Article  Google Scholar 

  • Manipalviratn, S., A. De Cherney, and J. Segars. 2009. Imprinting disorders and assisted reproductive technology. Fertility and Sterility 91: 305–315.

    Article  Google Scholar 

  • Massaro, P.A., D.L. MacLellan, P.A. Anderson, and R.L. Romao. 2015. Does intracytoplasmic sperm injection pose an increased risk of genitourinary congenital malformations in offspring compared to in vitro fertilization? A systematic review and meta-analysis. The Journal of Urology 193(5): 1837–1842.

    Article  Google Scholar 

  • McDonald, S.D., K. Murphy, J. Beyene, and A. Ohlsson. 2005a. Perinatel outcomes of singleton pregnancies achieved by in vitro fertilization: A systematic review and meta–analysis. Journal d’obstétrique et gynécologie du Canada 27(5): 449–459.

    Google Scholar 

  • McDonald, S., K. Murphy, J. Beyene, and A. Ohlsson. 2005b. Perinatal outcomes of in vitro fertilization twins: a systematic review and meta–analyses. American Journal of Obstetrics and Gynecology 193(1): 141–152.

    Google Scholar 

  • McLaughlin, C.C., M.S. Baptiste, M.J. Schymura, P.C. Nasca, and M.S. Zdeb. 2006. Maternal and infant birth characteristics and hepatoblastoma. American Journal of Epidemiology 163: 818–828.

    Article  Google Scholar 

  • Medical Protection Society. 2012. Parental responsibility. Resource document. http://www.medicalprotection.org/mps–factsheet–parental–responsibility.pdf. Accessed 20 Oct 2014.

  • Moll, A., S. Imhof, J. Cruysberg, A.Y. Schouten–van Meeteren, M. Boers, and F. Van Leeuwen. 2003. Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet 361: 309–310.

    Article  Google Scholar 

  • Monzo, C., D. Haouzi, K. Roman, S. Assou, H. Dechaud, and S. Hamamah. 2012. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Human Reproductiom 27(7): 2160–2168.

    Article  Google Scholar 

  • Nelissen, E.C.M., J.C.M. Dumoulin, F. Busato, L. Ponger, L.M. Eijssen, J.L.H. Evers, J. Tost, and A.P.A. van Montfoort. 2014. Altered gene expression in human placentas after IVF/ICSI. Human Reproduction 29(12): 2821–2831.

    Article  Google Scholar 

  • Olsen, A. 2015. Punishing parents: Child removal in the context of drug use. Drug and Alcohol Review 34(1): 27–30.

    Article  Google Scholar 

  • Padhee, M., S. Zhang, S. Lie, K.C. Wang, K. Botting, I.C. McMillen, S.M. MacLaughlin, and J.L. Morrison. 2015. The periconceptional environment and cardiovascular disease: Does in vitro embryo culture and transfer influence cardiovascular development and health. Nutrients 7(3): 1378–1425.

    Article  Google Scholar 

  • Pandey, S., A. Shetty, M. Hamilton, S. Bhattacharya, and A. Maheshwari. 2012. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: A systematic review and meta-analysis. Human Reproduction Update 18(5): 485–503.

    Article  Google Scholar 

  • Pelkonen, S., A.-L. Hartikainen, A. Ritvanen, R. Koivunen, H. Martikainen, M. Gissler, and A. Tiitinen. 2014. Major congenital anomalies in children born after frozen embryo transfer: A cohort study 1995–2006. Human Reproduction 29(7): 1552–1557.

    Article  Google Scholar 

  • Petridou, E.T., T.N. Sergentanis, P. Panagopoulou, M. Moschovi, S. Polychronopoulou, M. Baka, A. Pourtsidis, F. Athanassiadou, M. Kalmanti, V. Sidi, et al. 2012. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. Pediatric Blood & Cancer 58: 930–936.

    Article  Google Scholar 

  • Reefhuis, J., M.A. Honein, L.A. Schieve, A. Correa, C.A. Hobbs, and S.A. Rasmussen. 2009. The national birth defects prevention study assisted reproductive technology and major structural birth defects in the United States. Human Reproduction 24: 360–366.

    Article  Google Scholar 

  • Reigstad, M.M., I.K. Larsen, T.O. Myklebust, T.E. Robsahm, N.B. Oldereid, L.A. Brinton, and R. Storeng. 2016. Risk of cancer in children conceived by assisted reproductive technology. Pediatrics 137(3), e20152061.

    Google Scholar 

  • Rimm, A.A., A.C. Katayama, M. Diaz, and K.P. Katayama. 2004. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. Journal of Assisted Reproduction and Genetics 21(12): 437–443.

    Article  Google Scholar 

  • Rimoldi, S., C. Sartori, E. Rexhaj, D. Cerny, R. von Arx, R. Soria, M. Germond, Y. Allemann, and U. Scherrer. 2014. Vascular dysfunction in children conceived by assisted reproductive technologies: Underlying mechanisms and future implications. Swiss Medical Weekly 144: w13973.

    Google Scholar 

  • Rooke, J.A., T.G. McEvoy, C.J. Ashworth, J.J. Robinson, I. Wilmut, L.E. Young, and K.D. Sinclair. 2007. Ovine fetal development is more sensitive to perturbation by the presence of serum in embryo culture before rather than after compaction. Theriogenology 67: 639–647.

    Article  Google Scholar 

  • Rossi, A.C., and V. D’Addario. 2011. Neonatal outcomes of assisted and naturally conceived twins: Systematic review and meta–analysis. Journal of Perinatal Medicine 39(5): 489–493.

    Article  Google Scholar 

  • Sánchez-Calabuig, M.J., A.P. López-Cardona, R. Fernández-González, P. Ramos-Ibeas, N. Fonseca, R. Laguna, E. Pericuesta, A.A. Gutiérrez, and P. Bermejo-Álvarez. 2014. Potential health risks associated to ICSI: Insights from animal models and strategies for a safe procedure. Frontiers in Public Health 2: 241.

    Article  Google Scholar 

  • Savulescu, J. 2001. Procreative beneficence: Why we should select the best children. Bioethics 15: 413–426.

    Article  Google Scholar 

  • Savulescu, J., and G. Kahane. 2009. The moral obligation to create children with the best chance of the best life. Bioethics 23(5): 274–290.​

    Article  Google Scholar 

  • Scherrer, U., E. Rexhaj, Y. Allemann, C. Sartori, and S.F. Rimoldi. 2015. Cardiovascular dysfunction in children conceived by assisted reproductive technologies. European Heart Journal 36: 1583–1589.​

    Google Scholar 

  • Sinclair, K.D., T.G. McEvoy, E.K. Maxfield, C.A. Maltin, L.E. Young, I. Wilmut, P.J. Broadbent, and J.J. Robinson. 1999. Aberrant fetal growth and development after in vitro culture of sheep zygotes. Journal of Reproduction and Fertility 116: 177–186.

    Article  Google Scholar 

  • Sinclair, K.D., and A.J. Watkins. 2013. Parental diet, pregnancy outcomes and offspring health: Metabolic determinants in developing oocytes and embryos. Reproduction, Fertility and Development 26(1): 99–114.

    Google Scholar 

  • Society of Obstetricians and Gynaecologists of Canada, N. Okun, and S. Sierra. 2014. Pregnancy outcomes after assisted human reproduction. Journal of Obstetrics and Gynaecology Canada 36(1): 64–83.

    Article  Google Scholar 

  • Stromberg, B., G. Dahlquist, A. Ericson, O. Finnstrom, M. Koster, and K. Stjernqvist. 2002. Neurological sequelae in children born after in-vitro fertilisation: A population-based study. Lancet 359: 461–465.

    Article  Google Scholar 

  • Sundh, K.J., A.A. Henningsen, K. Källen, C. Bergh, L.B. Romundstad, M. Gissler, A. Pinborg, R. Skjaerven, A. Tiitinen, D. Vassard, B. Lannering, and U.B. Wennerholm. 2014. Cancer in children and young adults born after assisted reproductive technology: A Nordic cohort study from the Committee of Nordic ART and Safety (CoNARTaS). Human Reproduction 29(9): 2050–2057.

    Article  Google Scholar 

  • Tararbit, K., N. Lelong, A.-C. Thieulin, L. Houyel, D. Bonnet, F. Goffinet, B. Khoshnood, and EPICARD Study Group. 2013. The risk for four specific congenital heart defects associated with assisted reproductive techniques: A population-based evaluation. Human Reproduction 28: 367–374.

    Article  Google Scholar 

  • Tarín, J.J., M.A. García-Pérez, and A. Cano. 2014. Assisted reproductive technology results: Why are live-birth percentages so low? Molecular Reproduction & Development 81: 568–583.

    Article  Google Scholar 

  • Valenzuela-Alcaraz, B., F. Crispi, B. Bijnens, M. Cruz-Lemini, M. Creus, M. Sitges, J. Bartrons, S. Civico, J. Balasch, and E. Gratacós. 2013. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation 128: 1442–1450.

    Article  Google Scholar 

  • Wen, J., J. Jiang, C. Ding, J. Dai, Y. Liu, Y. Xia, J. Liu, and Z. Hu. 2012. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: A meta-analysis. Fertility and Sterility 97(6): 1331–1337.

    Article  Google Scholar 

  • Whitelaw, N., S. Bhattacharya, G. Hoad, G.W. Horgan, H. Hamilton, and P. Haggarty. 2014. Epigenetic status in the offspring of spontaneous and assisted conception. Human Reproduction 29(7): 1452–1458.

    Article  Google Scholar 

  • Williams, C.L., K.J. Bunch, C.A. Stiller, M.F.G. Murphy, B.J.W. Botting, H. Wallace, M. Davies, and A.G. Sutcliffe. 2013. Cancer risk among children born after assisted conception. The New England Journal of Medicine 369: 1819–1827.

    Article  Google Scholar 

  • Wu, Y., Z. Lv, Y. Yang, G. Dong, Y. Yu, Y. Cui, M. Tong, L. Wang, Z. Zhou, H. Zhu, Q. Zhou, and J. Sha. 2014. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cellular and Molecular Life Sciences 71: 1761–1774.

    Article  Google Scholar 

  • Young, L.E., K.D. Sinclair, and I. Wilmut. 1998. Large offspring syndrome in cattle and sheep. Reviews of Reproduction 3: 155–163.

    Article  Google Scholar 

  • Young, L.E., K. Fernandes, T.G. McEvoy, S.C. Butterwith, C.G. Gutierrez, C. Carolan, P.J. Broadbent, J.J. Robinson, I. Wilmut, and K.D. Sinclair. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics 27: 153–154.

    Article  Google Scholar 

  • Yu, Y., J. Wu, Y. Fan, Z. Lv, X. Guo, C. Zhao, R. Zhou, Z. Zhang, F. Wang, M. Xiao, L. Chen, H. Zhu, W. Chen, M. Lin, J. Liu, Z. Zhou, L. Wang, R. Huo, Q. Zhou, and J. Sha. 2009. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Molecular and Cellular Proteomics 8(7): 1490–1500.

    Article  Google Scholar 

  • Zhao, H.C., Y. Zhao, M. Li, J. Yan, L. Li, R. Li, P. Liu, Y. Yu, and J. Qiao. 2013. Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biology of Reproduction 89(5): 117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Güell Pelayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Güell Pelayo, F. (2017). Parental Responsibility and the Principle of Procreative Beneficence in Light of Assisted Reproductive Technologies. In: Hens, K., Cutas, D., Horstkötter, D. (eds) Parental Responsibility in the Context of Neuroscience and Genetics. International Library of Ethics, Law, and the New Medicine, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-42834-5_11

Download citation

Publish with us

Policies and ethics