Skip to main content

Fungal Biosynthesis of Nanoparticles, a Cleaner Alternative

  • Chapter
  • First Online:
Fungal Applications in Sustainable Environmental Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi play important roles in our daily lives, from the edible ones to those that can provoke severe diseases and even death. There are many fields in which fungi are extensively used and a number of species are economically important. In nanotechnology, they have also been identified as excellent candidates for the production of nanoparticles (NPs), thus presenting a cleaner alternative to produce new materials with a wide range of potential applications in biomedicine and industry. In this respect, several species have demonstrated excellent bioreducing capacity to produce metallic NPs, presenting a number of advantages over other biological systems such as a rapid growth rate, simple nutrient requirements, and easy handling of biomass/cultures. Furthermore, they secrete proteins that are assumed to have enhanced reducing and stabilizing capacity. Metallic NPs have been successfully produced using fungal biomass, cell-free filtrate, fungal extract, and single purified molecules. Recent investigations have also reported the potential applications of NPs produced using fungi; particularly silver nanoparticles (AgNPs) for their excellent antimicrobial activity. Despite the advances in this field, there is still much work to be done, especially in finding efficient protocols to control shape and size. Also, the use of nonpathogenic fungi will greatly improve the biocompatibility of the produced nanomaterial. In this chapter, the state of the art in fungal biosynthesis of metallic NPs is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen S, Isaac RS, R, Geo S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45

    Google Scholar 

  • Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus Stolonifer and its antibacterial activity against MDR strains of Pseudomonas Aeruginosa from burnt patients. Int J Environ Sci 1(7):1582–1592

    CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances 4(8):3974–3983

    Article  CAS  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Google Scholar 

  • Ahmed M, Karns M, Goodson M, Rowe J, Hussain S, Schlager J et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Anand BG, Thomas CN, Prakash S, Kumar CS (2015) Biosynthesis of silver nanoparticles by marine sediment fungi for a dose dependent cytotoxicity against HEp2 cell lines. Biocatal Agr Biotechnol 4:150–157

    Google Scholar 

  • Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19(6):1083–1090

    Article  CAS  Google Scholar 

  • Azmath P, Baker S, Rakshith D, Satish S (2015) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J. doi:10.1016/j.jsps.2015.01.008

    PubMed  PubMed Central  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68:88–92

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Banu A, Rathod V (2011) Synthesis and characterization of silver nanoparticles by Rhizopus stolonier. Int J Biomed Adv Res 2:148–158

    Article  Google Scholar 

  • Banu AN, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(8):2869–2877

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113(10):3843–3851

    Article  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger–its characterization and stability. Chem Eng Technol 32(7):1036–1041

    Article  CAS  Google Scholar 

  • Bhargava A, Jain N, Barathi M, Akhtar MS, Yun YS, Panwar J (2013) Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. In: Nanotechnology for sustainable development (pp 337–348). Springer International Publishing

    Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun S-I (2010a) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun S-I (2010b) Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B 79:531–534

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3. 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Castro ME, Cottet L, Castillo A (2014) Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett 115:42–44

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Bazylinksi DA, Lower BH (2010) Bacteria that synthesize nano-sized compasses to navigate using earth’s geomagnetic field. Nat Edu Knowl 1:14

    Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean Forests. J Nanomater. doi:10.1155/2015/789089

    Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med 9(1):105–110

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009a) Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: Atomic force microscopic study. Langmuir 25:360–366

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009b) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi LS, Bareh DA, Joshi SR (2014) Studies on biosynthesis of antimicrobial silver nanoparticles using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc Natl Acad Sci India Sect B: Biol Sci 84:1091–1099

    Article  CAS  Google Scholar 

  • Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13(3):921–930

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. doi:10.1186/1477-3155-3-8

    Google Scholar 

  • Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus 3:645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80(3):779–782

    Article  CAS  Google Scholar 

  • Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B 87(1):23–27

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009a) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009b) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B 74:123–126

    Article  CAS  Google Scholar 

  • Fayaz AM, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010a) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B 75:175–178

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010b) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    CAS  PubMed  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:123–129

    Article  Google Scholar 

  • Gade A, Gaikwad S, Durán N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5(4):382–386

    Article  CAS  Google Scholar 

  • Ganachari SV, Bhat R, Deshpande R, Venkataraman A (2012) Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies. BioNanoScience 2(4):316–321

    Article  Google Scholar 

  • Ganbarov KG, Ahmadov IS, Ramazanov MA, Musayev EM, Eyvazova QI, Aghamaliyev ZA (2014) Silver nanoparticles synthesized by the Azerbaijanian environmental isolates Aspergillus niger. J Microbiol Biotechnol Food Sci 4(2):137–141

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Ghodake VP, Kininge PT, Magdum SP, Dive AS, Pillai MM (2011) Biosynthesis of silver nanoparticles using Trichosporon beigelii NCIM 3326 and evaluation of their antimicrobial activity. J Eng Res Stud E-ISSN 976:7916

    Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A et al (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172(8):4084–4098

    Article  CAS  PubMed  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek 103(5):1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704

    Article  CAS  PubMed  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Hiremath J, Rathod V, Ninganagouda S, Singh D, Prema K (2014) Antibacterial activity of silver nanoparticles from Rhizopus spp. against Gram negative E. coli MDR strains. J Pure Appl Microbiol 8(1):555–562

    Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005

    Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12(1):7–11

    CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085

    Article  CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B 81:430–433

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97(2):859–869

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Hirst DG (2012) O’sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Cluster Sci 22(2):225–232

    Article  CAS  Google Scholar 

  • Joshi PA, Bonde SR, Gaikwad SC, Gade AK, Abd-Elsalam K, Rai MK (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and it’s efficacy against bacteria and Malassezia furfur. J Bionanosci 7(4):378–385

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kathiresan K, Alikunhi NM, Pathmnaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci Pol 30(3):254–258

    Article  CAS  Google Scholar 

  • Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ (2003) Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal Today 87(1):153–162

    Article  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T et al (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi Puccinia graminis. Mater Lett 81:69–72

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krishna G, Prasad MR, Krishna PS, Bindu NSH, Samatha B, Charya MA (2015) Fungus-mediated synthesis of silver nanoparticles and their activity against Gram positive and Gram negative bacteria in combination with antibiotics. Walailak J Sci Technol (WJST), 12(7)

    Google Scholar 

  • Krumov N, Oder S, Perner-Nocht I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyabeh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A et al (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14:1–7

    Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y et al (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M. et al. (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano 3(2):395–401

    Google Scholar 

  • Maier SA (2006) Plasmonics: The promise of highly integrated optical devices. IEEE J Sel Topics Quantum Electron 12(6):1671–1677

    Article  CAS  Google Scholar 

  • Maliszewska I, Sadowski Z (2009) Synthesis and antibacterial activity of silver nanoparticles. In: Journal of Physics: Conference Series 146(1):012024. IOP Publishing

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using Ascomycota fungi Penicillium nalgiovense AJ12. J Cluster Sci 25(4):989–1004

    Article  CAS  Google Scholar 

  • Moazeni M, Shahverdi AR, Nabili M, Noorbakhsh F, Rezaie S (2014) Green synthesis of silver nanoparticles: The reasons for and against Aspergillus parasiticus. Nanomed J 1(4):267–275

    Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289. doi:10.4103/0975-7406.72127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed AGMT (2014) Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian J Biotechnol 18(2)

    Google Scholar 

  • Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14(14):1234–1241

    Article  CAS  Google Scholar 

  • Mohammadi B, Salouti M (2015) Extracellular bioynthesis of silver nanoparticles by Penicillium chrysogenum and Penicillium expansum. Synth React Inorg Met-Org Nano-Met Chem 45(6):844–847

    Article  CAS  Google Scholar 

  • Muhsin TM, Hachim AK (2014) Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J Microbiol Biotechnol 30(7):2081–2090

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R et al (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  PubMed  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BS, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 116:485–490

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4(4):623–629

    Google Scholar 

  • Nithya R, Ragunathan R (2014) In vitro synthesis, characterization and medical application of silver nanoparticle by using a lower fungi. Middle-East J Sci Res 21(6):922–928

    Google Scholar 

  • Nitta SK, Numata K (2013) Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. Int J Mol Sci 14(1):1629–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  • Nohynek GJ, Dufour EK (2012) Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch Toxicol 86:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  PubMed  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc 73(2):374–381

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticles synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74:309–316

    Article  CAS  Google Scholar 

  • Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621

    Article  CAS  PubMed  Google Scholar 

  • Prusinkiewicz MA, Farazkhorasani F, Dynes JJ, Wang J, Kaminskyj SG et al (2012) Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles. Analyst 137:4934–4942. doi:10.1039/c2an35620a

    Article  CAS  PubMed  Google Scholar 

  • Quester K (2014) The use of Neurospora crassa soluble proteins as bioreducing agent for the production of gold and silver nanostructures. Doctoral thesis. Centro de Investigación Científica y Educación Superior de Ensenada, Baja California, 166 pp

    Google Scholar 

  • Quester K, Avalos-Borja M, Castro-Longoria E (2013a) Biosynthesis and microscopic study of metallic nanoparticles. Micron 54:1–27

    Article  PubMed  CAS  Google Scholar 

  • Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013b) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS ONE 8(10):e77486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X et al (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619

    Article  CAS  PubMed  Google Scholar 

  • Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28:848–855

    Article  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano. Biomed Eng 3(3):174–178

    CAS  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29

    Article  CAS  PubMed  Google Scholar 

  • Rathod V, Banu A, Ranganath E (2011) Biosynthesis of highly stabilized silver nanoparticles by Rhizopus stolonifer and their Anti-fungal efficacy. Int J Mol Clin Microbiol 1(2):65–70

    Google Scholar 

  • Ravindra BK, Rajasab AH (2015) Silver Nanoparticles synthesis from different fungal species and their antifungal effect. Int J Pharm Pharm Sci 7(5):165–170

    CAS  Google Scholar 

  • Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (Berk.) Sacc: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruc 6:1289–1299

    Google Scholar 

  • Re F, Moresco R, Masserini M (2012) Nanoparticles for neuroimaging. J Phys D Appl Phys 45:073001. doi:10.1088/0022-3727/45/7/073001

    Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, De Souza AO et al (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97(2):775–782

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Mukherjee T, Chakraborty S, Das TK (2013) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomat Bios 8:197–205

    Google Scholar 

  • Sadhasivam S, Shammugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B 81:358–362

    Article  CAS  Google Scholar 

  • Sadhasivam S, Shanmugam P, Veerapandian M, Subbiah R, Yun K (2012) Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25:351–360

    Article  CAS  PubMed  Google Scholar 

  • Sagar G, Ashok B (2012) Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur J Exp Biol 2:1654–1658

    CAS  Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct 5:887–895

    Google Scholar 

  • Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Digest J Nanomater Biostruct (DJNB) 6(4)

    Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD (2011) Salunke. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  PubMed  Google Scholar 

  • San Chan Y, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33(1):282–288

    Google Scholar 

  • Sanghi R, Verma P (2009a) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2010) pH dependant fungal proteins in the ‘green’ synthesis of gold nanoparticles. Adv Mat Lett 1:193–199

    Article  Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B 77:214–218

    Article  CAS  Google Scholar 

  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Roy SK, Laskar A, Chattopadhyay D, Acharya K (2013) Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quél. Mater Lett 92:313–316

    Article  CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012

    Article  CAS  Google Scholar 

  • Selvi KV, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol App Sci 1(1):56–62

    Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  PubMed  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Khan MI, Kumar R, Sastry M (2004) Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. J Colloid Interface Sci 274:69–75

    Article  CAS  PubMed  Google Scholar 

  • Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Cluster Sci 22(4):661–665

    Article  CAS  Google Scholar 

  • Singh P, Raja RB (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2(4):600–605

    CAS  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. doi:10.1155/2014/408021

    Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184. doi:10.1007/s00436-011-2467-4

    Article  PubMed  Google Scholar 

  • Spring S, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153

    Article  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21(6):4624–4633

    Article  CAS  Google Scholar 

  • Tripathi RM, Gupta RK, Singh P, Bhadwal AS, Shrivastav A, Kumar N et al (2014) Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors Actuators B: Chem 204:637–646

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79

    Article  CAS  Google Scholar 

  • Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Progress Sustain Energy 34(1):194–197

    Article  CAS  Google Scholar 

  • Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine-derived fungus Aspergillus flavus from Bhavnagar Coast, Gulf of Khambhat, India. J Mar Biol Oceanogr 3(1):2

    Google Scholar 

  • Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomater Biostruct 4(2):349–355

    Google Scholar 

  • Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee K.-J, et al. (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182:317–324

    Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus Phaenerochete chrysosporium. Colloids Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865

    Article  CAS  Google Scholar 

  • Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30(11):2797–2803

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:475

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of this work was funded by a SEP-CONACyT grant (CB2011/169154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Castro-Longoria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castro-Longoria, E. (2016). Fungal Biosynthesis of Nanoparticles, a Cleaner Alternative. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_13

Download citation

Publish with us

Policies and ethics