Skip to main content

Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells

  • Chapter
  • First Online:
Current Strategies in Cancer Gene Therapy

Abstract

Plasmid DNA is being used as a pharmaceutical agent in vaccination, as well as a basic substance and starting material in gene and cell therapy, and viral vector production. Since the uncontrolled expression of backbone sequences present in such plasmids and the dissemination of antibiotic resistance genes may have profound detrimental effects, an important goal in vector development was to produce supercoiled DNA lacking bacterial backbone sequences: Minicircle (MC) DNA. The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform enabling a close-to-random profile of genomic integration. In combination, the MC platform greatly enhances SB transposition and transgene integration resulting in higher numbers of stably modified target cells. We have recently developed a strategy for MC-based SB transposition of chimeric antigen receptor (CAR) transgenes that enable improved transposition rates compared to conventional plasmids and rapid manufacturing of therapeutic CAR T cell doses (Monjezi et al. 2016). This advance enables manufacturing CAR T cells in a virus-free process that relies on SB-mediated transposition from MC DNA to accomplish gene-transfer. Advantages of this approach include a strong safety profile due to the nature of the MC itself and the genomic insertion pattern of MC-derived CAR transposons. In addition, stable transposition and high-level CAR transgene expression, as well as easy and reproducible handling, make MCs a preferred vector source for gene-transfer in advanced cellular and gene therapy. In this chapter, we will review our experience in MC-based CAR T cell engineering and discuss our recent advances in MC manufacturing to accelerate both pre-clinical and clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronovich EL, McIvor RS, Hackett PB (2011) The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 20(R1):R14–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty GL, Haas AR, Maus MV et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res. 2(2):112–120

    Article  CAS  PubMed  Google Scholar 

  • Bigger BW, Tolmachov O, Collomber JM, Fragkos M, Palaszewski I, Coutelle C (2001) An araC-controlled bacterial cre expression system to produce DNA MC vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  CAS  PubMed  Google Scholar 

  • Brentjens RJ, Riviere I, Park JH et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CE, Wright CL, Naranjo A et al (2005) Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. J Immunol Methods 297(1–2):39–52

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, Orio J et al (2013) Minicircle DNA Electrotransfer for efficient Tissue targeted Gene Delivery. Gene Ther 20(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, He CY, Ehrhardt A, Kay MA (2003) MC DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  CAS  PubMed  Google Scholar 

  • Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled MC. Gene Ther 4:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 6(224):224–225

    Article  Google Scholar 

  • Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberl L, Kristensen CS, Givskov M, Grohmann E, Gerlitz M, Schwab H (1994) Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 12:131–141

    Article  CAS  PubMed  Google Scholar 

  • Field AC, Vink C, Gabriel R et al (2013) Comparison of lentiviral and sleeping beauty mediated alphabeta T cell receptor gene-transfer. PLoS ONE 8(6):e68201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gossen JA, de Leeuw WJF, Molijn AC et al (1993) Plasmid rescue from transgenic mouse DNA using lacI repressor protein conjugated to magnetic beads. Biotechniques 14:624–629

    CAS  PubMed  Google Scholar 

  • Huang X, Guo H, Kang J et al (2008) Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 16(3):580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudecek M, Lupo-Stanghellini MT, Kosasih PL et al (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19(12):3153–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudecek M, Sommermeyer D, Kosasih PL et al (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 3(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  • Izsvak Z, Hackett PB, Cooper LJ, Ivics Z (2010) Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. BioEssays 32(9):756–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivics Z, Izsvak Z (2011) Nonviral gene delivery with the sleeping beauty transposon system. Hum Gene Ther 22(9):1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Jechlinger W, Azimpour Tabrizi T, Lubitz W, Mayrhofer P (2004) MC DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol 8:222–231

    Article  PubMed  Google Scholar 

  • Jin Z, Maiti S, Huls H et al (2011) The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 18(9):849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbelt D, Schleef M, Schmeer M, Aumann J, Schlag PM, Walther W (2013) Performance of high quality minicircle DNA for in vitro and in vivo gene-transfer. Mol Biotechnol 53(1):80–89

    Article  Google Scholar 

  • Mates L, Chuah MK, Belay E et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene-transfer in vertebrates. Nat Genet 41(6):753–761

    Article  CAS  PubMed  Google Scholar 

  • Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayrhofer P, Blaesen M, Schleef M, Jechlinger W (2008) Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 10(11):1253–1269

    Google Scholar 

  • Monjezi R, Miskey C, Gogishvili T et al (2016) Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. doi:10.1038/leu.2016.180 (epub ahead of print)

    PubMed  Google Scholar 

  • Nehlsen K, Broll S, Bode J (2006) Replicating MCs: generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol 10:233–244

    Google Scholar 

  • Peng PD, Cohen CJ, Yang S et al (2009) Efficient nonviral Sleeping Beauty transposon-based TCR gene-transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity. Gene Ther 16(8):1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos CA, Savoldo B, Dotti G (2014) CD19-CAR trials. Cancer J 20(2):112–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58

    PubMed  Google Scholar 

  • Schleef M, Schmeer M (2011) Minicircle—Die nächste Generation nicht-viraler Gentherapie-Vektoren. Parm unserer Zeit 3:220–224

    Google Scholar 

  • Schleef M (ed) (2013) MC and Miniplasmid DNA vectors—the future of non-viral and viral gene-transfer. Wiley-Blackwell, Weinheim

    Google Scholar 

  • Schleef M, Schirmbeck R, Reiser M, Michel M-L, Schmeer M (2015) MC: next generation DNA vectors for vaccination. In: Walther W, Stein U (eds) Gene therapy of solid cancers: methods and protocols (Methods in Molecular Biology) vol 1317. Springer, New York

    Google Scholar 

  • Schmeer M, Schleef M (2014) Pharmaceutical grade large-scale plasmid DNA manufacturing process. In: Rinaldi M et al (eds) Methods in molecular biology, DNA Vaccines, vol 1143, pp 219–240. Springer, Heidelberg

    Google Scholar 

  • Singh H, Manuri PR, Olivares S et al (2008) Redirecting specificity of T cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68(8):2961–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Figliola MJ, Dawson MJ et al (2013) Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 8(5):e64138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Huls H, Kebriaei P, Cooper LJ (2014) A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 257(1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307

    Article  CAS  PubMed  Google Scholar 

  • Sommermeyer D, Hudecek M, Kosasih PL et al (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30(2):492–500

    CAS  PubMed  Google Scholar 

  • Swierczek M, Izsvak Z, Ivics Z (2012) The Sleeping Beauty transposon system for clinical applications. Expert Opin Biol Ther 12(2):139–153

    Article  CAS  PubMed  Google Scholar 

  • Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    Article  CAS  PubMed  Google Scholar 

  • Turtle CJ, Hudecek M, Jensen MC, Riddell SR (2012) Engineered T cells for anti-cancer therapy. Curr Opin Immunol 24(5):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turtle CJ, Hanafi LA, Berger C et al (2016) CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest. 126(6):2123–2138

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chang WC, Wong CW et al (2011) A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118(5):1255–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schleef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hudecek, M. et al. (2016). Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells. In: Walther, W. (eds) Current Strategies in Cancer Gene Therapy. Recent Results in Cancer Research, vol 209. Springer, Cham. https://doi.org/10.1007/978-3-319-42934-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42934-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42932-8

  • Online ISBN: 978-3-319-42934-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics