Skip to main content

Fully Automated Segmentation Using Distance Regularised Level Set and Deep-Structured Learning and Inference

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

We introduce a new segmentation methodology that combines the structured output inference from deep belief networks and the delineation from level set methods to produce accurate segmentation of anatomies from medical images. Deep belief networks can be used in the implementation of accurate segmentation models if large annotated training sets are available, but the limited availability of such large datasets in medical image analysis problems motivates the development of methods that can circumvent this demand. In this chapter, we propose the use of level set methods containing several shape and appearance terms, where one of the terms consists of the result from the deep belief network. This combination reduces the demand for large annotated training sets from the deep belief network and at the same time increases the capacity of the level set method to model more effectively the shape and appearance of the visual object of interest. We test our methodology on the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 left ventricle segmentation challenge dataset and on Japanese Society of Radiological Technology (JSRT) lung segmentation dataset, where our approach achieves the most accurate results of the field using the semi-automated methodology and state-of-the-art results for the fully automated challenge.

This work is an extension of the papers published by the same authors at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014) [1] and the IEEE International Conference on Image Processing (ICIP 2015) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngo T, Carneiro G (2014) Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3118–3125

    Google Scholar 

  2. Ngo TA, Carneiro G (2015) Lung segmentation in chest radiographs using distance regularized level set and deep-structured learning and inference. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 2140–2143

    Google Scholar 

  3. Petitjean C, Dacher J-N (2011) A review of segmentation methods in short axis cardiac mr images. Med Image Anal 15(2):169–184

    Article  Google Scholar 

  4. Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G (2009) Evaluation framework for algorithms segmenting short axis cardiac mri. In: MIDAS J. cardiac MR left ventricle segmentation challenge

    Google Scholar 

  5. Candemir S, Jaeger S, Musco J, Xue Z, Karargyris A, Antani S, Thoma G, Palaniappan K (2014) Lung segmentation in chest radiographs using anatomical atlases with non-rigid registration

    Google Scholar 

  6. Carrascal FM, Carreira JM, Souto M, Tahoces PG, Gómez L, Vidal JJ (1998) Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs. Med Phys 25(7):1118–1131

    Article  Google Scholar 

  7. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  MATH  Google Scholar 

  8. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  9. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  10. Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Databased-guided segmentation of anatomical structures with complex appearance. In: CVPR

    Google Scholar 

  11. Cobzas D, Schmidt M (2009) Increased discrimination in level set methods with embedded conditional random fields. In: IEEE conference on Computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 328–335

    Google Scholar 

  12. Huang R, Pavlovic V, Metaxas DN (2004) A graphical model framework for coupling mrfs and deformable models. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol. 2. IEEE, pp II–739

    Google Scholar 

  13. Tsechpenakis G, Metaxas DN (2007) Crf-driven implicit deformable model. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–8

    Google Scholar 

  14. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254

    Article  MathSciNet  Google Scholar 

  15. Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  16. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K-I, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol 174(1):71–74

    Article  Google Scholar 

  17. Lu Y, Radau P, Connelly K, Dick A, Wright G (2009) Automatic image-driven segmentation of left ventricle in cardiac cine mri. In: The MIDAS journal, vol 49

    Google Scholar 

  18. Huang S, Liu J, Lee L, Venkatesh S, Teo L, Au C, Nowinski W (2009) Segmentation of the left ventricle from cine mr images using a comprehensive approach. In: The MIDAS journal, vol. 49

    Google Scholar 

  19. O’Brien S, Ghita O, Whelan P (2009) Segmenting the left ventricle in 3d using a coupled asm and a learned non-rigid spatial model. In: The MIDAS journal, vol 49

    Google Scholar 

  20. Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in mr image sequences. Med Image Anal 14(6):738–749

    Article  Google Scholar 

  21. Jolly M (2009) Fully automatic left ventricle segmentation in cardiac cine mr images using registration and minimum surfaces. In: The MIDAS journal, vol 49

    Google Scholar 

  22. Constantinides C, Roullot E, Lefort M, Frouin F (2012) Fully automated segmentation of the left ventricle applied to cine mr images: description and results on a database of 45 subjects. In: Engineering in medicine and biology society (EMBC) (2012) annual international conference of the IEEE. IEEE, pp 3207–3210

    Google Scholar 

  23. Wijnhout J, Hendriksen D, Assen H, der Geest R (2009) Lv challenge lkeb contribution: fully automated myocardial contour detection. In: The MIDAS journal, vol 43

    Google Scholar 

  24. Van Ginneken B, Frangi AF, Staal JJ, ter Haar Romeny BM, Viergever MA (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8), 924–933

    Google Scholar 

  25. Van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal 10(1):19–40

    Article  Google Scholar 

  26. BakIr G (2007) Predicting structured data. MIT press, Cambridge

    Google Scholar 

  27. Tsochantaridis I, Joachims T, Hofmann T, Altun Y, Singer Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6(9): 1453–1484

    Google Scholar 

  28. Collins M (2002) Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing-volume 10. Association for Computational Linguistics, pp 1–8

    Google Scholar 

  29. Fasel I, Berry J (2010) Deep belief networks for real-time extraction of tongue contours from ultrasound during speech. In: 2010 20th international conference on pattern recognition (ICPR). IEEE, pp 1493–1496

    Google Scholar 

  30. Farabet C, Couprie C, Najman L, LeCun Y (2012) Scene parsing with multiscale feature learning, purity trees, and optimal covers. arXiv:1202.2160

  31. Ngo TA, Carneiro G (2013) Left ventricle segmentation from cardiac mri combining level set methods with deep belief networks. In: 2013 20th IEEE international conference on image processing (ICIP). IEEE, pp 695–699

    Google Scholar 

  32. Ngo TA, Carneiro G (2014) Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR). IEEE

    Google Scholar 

  33. Cremers D, Osher SJ, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vision 69(3):335–351

    Article  Google Scholar 

  34. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  35. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Article  Google Scholar 

  36. Huang S, Liu J, Lee LC, Venkatesh SK, San Teo LL, Au C, Nowinski WL (2011) An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine mr images. J Digit Imaging 24(4):598–608

    Article  Google Scholar 

  37. Marak L, Cousty J, Najman L, Talbot H et al (2009) 4d morphological segmentation and the miccai lv-segmentation grand challenge. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge, no 1, pp 1–8

    Google Scholar 

  38. Hu H, Liu H, Gao Z, Huang L (2012) Hybrid segmentation of left ventricle in cardiac mri using gaussian-mixture model and region restricted dynamic programming. In: Magnetic resonance imaging

    Google Scholar 

  39. Dawoud A (2011) Lung segmentation in chest radiographs by fusing shape information in iterative thresholding. IET Comput Vision 5(3):185–190

    Article  Google Scholar 

  40. Seghers D, Loeckx D, Maes F, Vandermeulen D, Suetens P (2007) Minimal shape and intensity cost path segmentation. IEEE Trans Med Imaging 26(8):1115–1129

    Article  Google Scholar 

  41. Yu T, Luo J, Ahuja N (2005) Shape regularized active contour using iterative global search and local optimization. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 2. IEEE, pp 655–662

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Australian Research Council’s Discovery Projects funding scheme (project DP140102794). Tuan Anh Ngo acknowledges the support of the 322 Program - Vietnam International Education Development, Ministry of Education and Training (VIED-MOET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Anh Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ngo, T.A., Carneiro, G. (2017). Fully Automated Segmentation Using Distance Regularised Level Set and Deep-Structured Learning and Inference. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics