Skip to main content

Biophysics Modeling to Optimize Ion Beam Cancer Therapy

  • Chapter
  • First Online:
Nanoscale Insights into Ion-Beam Cancer Therapy

Abstract

The optimization of treatments by Ion Beam Cancer Therapy (IBCT) relies on modeling to simulate the transport of the incident ions (and the secondary particles) into patients, and, to predict the biological effects induced by all these particles. Considering the complexity of biological systems , multi-scale approaches seem necessary to build the bridge between the primary physical and chemical events and the consequences for patients both in healthy tissues and tumors. After a brief history of IBCT in France, this chapter presents models used to estimate the probability of tumor control by IBCT, showing the importance of predicting the survival of biological cells to complex irradiation. Then, follows a presentation and analysis of models predicting cell survival to irradiation with ions, including: the procedure developed in Japan for cancer treatments with passive beams; the microdosimetry models TDRA and MKM, and, the MMKM, a modified version of MKM used for active beam in Japan; the Katz models and the LEM, which is presently used by the European centers of therapy with carbon ions. Then, as perspectives, modeling based on nanodosimetry will be addressed with a focus on the \(\text {NanOx}^{\text {TM}}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaldi U, Kraft G (2005) Radiotherapy with beams of carbon ions. Rep Progr Phys 68(8):1861

    Article  ADS  Google Scholar 

  2. Beuve M (2009) Formalization and theoretical analysis of the local effect model. Radiat Res 172(3):394–402

    Article  Google Scholar 

  3. Beuve M (2010) In response to the comment by T. Elssser and M. Scholz. Radiat Res 173(6):856–858

    Article  Google Scholar 

  4. Beuve M, Colliaux A, Dabli D, Dauvergne D, Gervais B, Montarou G, Testa E (2009) Statistical effects of dose deposition in track-structure modelling of radiobiology efficiency. Nucl Instrum Methods Phys Resh Sect B: Beam Interact Mater Atoms 267(6):983–988 (Proceedings of the seventh international symposium on swift heavy ions in matter)

    Google Scholar 

  5. Beuve M, Gersende A, Mira M, Colliaux A, Battiston-Montagne P, Jalade P, Balanzat E, Demeyer A, Bajard M, Rodriguez-Lafrasse C (2008) Radiobiologic parameters and local effect model predictions for head-and-neck squamous cell carcinomas exposed to high linear energy transfer ions. Int J Radiat Oncol Biol Phys 71(2):635–642

    Article  Google Scholar 

  6. Beuve M, Moreau J-M, Rodriguez C, Testa E (2015) Biological systems: from water radiolysis to carbon ion radiotherapy. J Phys: Conf Ser 629(1)

    Google Scholar 

  7. Casiraghi M, Schulte RW (2015) Nanodosimetry-based plan optimization for particle therapy. Comput Math Methods Med

    Google Scholar 

  8. Chanrion M-A, Sauerwein W, Jelen U, Wittig A, Engenhart-Cabillic R, Beuve M (2014) The influence of the local effect model parameters on the prediction of the tumor control probability for prostate cancer. Phys Med Biol 59(12):3019

    Article  Google Scholar 

  9. Chatterjee A, Schaefer HJ (1976) Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys M13:215–227

    Article  Google Scholar 

  10. Chetioui A, Despiney I, Guiraud L, AdouiL L, Sabatier L, Dutrillaux B (1994) Possible role of inner-shell ionization phenomena in cell inactivation by heavy ions. Int J Radiat Biol 655(5):511–522

    Article  Google Scholar 

  11. Conte V, Colautti P, Moro D, Grosswendt B (2014) Track structure of carbon ions: measurements and simulations. Radiat Prot Dosim 161(1–4):445448

    Google Scholar 

  12. Tobias C, Blakel E, Ngo FQH, Yang TCH (1980) The repair-misrepair model of cell survival. Radiat Biol Cancer Res 195–230

    Google Scholar 

  13. Cunha M, Testa E, Komova O, Nasonova E, Melnikova L, Shmakova N, Beuve M (2015) Modeling cell response to low doses of photon irradiationpart 1: on the origin of fluctuations. Radiat Environ Biophys 1–12

    Google Scholar 

  14. Curtis S (1986) Lethal and potentially lethal lesions induced by radiation: a unified repair model. Radiat Res 106(2):252–270

    Article  Google Scholar 

  15. Curtis S (1989) Erratum: Lethal and potentially lethal lesions induced by radiation: a unified repair model. Radiat Res 119(3):584

    Article  ADS  Google Scholar 

  16. Elsasser T, Scholz M (2007) Cluster effects within the local effect model. Rad Res 167(3):319–329

    Article  Google Scholar 

  17. Elssser T, Krmer M, Scholz M (2008) Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 71(3):866–872

    Article  Google Scholar 

  18. Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of dna damage after proton irradiation. Radiat Res 159:40110

    Article  Google Scholar 

  19. Friedland W, Kundrt P (2015) Chromosome aberration model combining radiation tracks, chromatin structure, dsb repair and chromatin mobility. Radiat Protect Dosim

    Google Scholar 

  20. Friedrich T, Scholz U, Elssser T, Durante M, Scholz M (2012) Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol 88(1–2):103–107

    Article  Google Scholar 

  21. Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai T, Ando K (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated he-, c- and ne-ion beams. Radiat Res 154:48596

    Article  Google Scholar 

  22. Garty G, Schulte R, Shchemelinin S, Leloup C, Assaf G, Breskin A, Chechik R, Bashkirov V, Milligan J, Grosswendt B (2010) A nanodosimetric model of radiation-induced clustered dna damage yields. Phys Med Biol 55(3):761

    Article  Google Scholar 

  23. Garty G, Shchemelinin S, Breskin A, Chechik R, Assaf G, Orion I, Bashkirov V, Schulte RW, Grosswendt B (2002) The performance of a novel ion-counting nanodosimeter. Nucl Instrum Methods A 491:21235

    Google Scholar 

  24. Gervais B, Beuve M, Olivera G, Galassi M (2006) Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem 75(4):493–513

    Article  ADS  Google Scholar 

  25. Goodhead D (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in dna. Int J Radiat Biol 65(1):7–17

    Article  Google Scholar 

  26. Goodhead D (1995) Molecular and cell models of biological effects of heavy ion radiation. Radiat Environ Biophys 34(2):67–72

    Article  Google Scholar 

  27. Grosswendt B (2004) Recent advances of nanodosimetry. Radiat Prot Dosim 110(1–4):789–799

    Article  Google Scholar 

  28. Hawkins R (2003) A microdosimetric-kinetic model for the effect of non-poisson distribution of lethal lesions on the variation of rbe with let. Rad Res 160(160):61–69

    Article  Google Scholar 

  29. Hawkins RB (1994) A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res 140:36647

    Article  Google Scholar 

  30. Hawkins RB (1996) A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any let, with experimental and clinical applications. Int J Radiat Biol 69(6):739–755

    Google Scholar 

  31. Hirao Y, Ogawa H, Yamada S, Sato Y, Yamada T, Sato K, Itano A, Kanazawa M, Noda K, Kawachi K, Endo M, Kanai T, Kohno T, Sudou M, Minohara S, Kitagawa A, Soga F, Takada E, Watanabe S, Endo K, Kumada M, Matsumoto S (1992) Heavy ion synchrotron for medical use himac project at nirs -japan. Nucl Phys A 538:541–550

    Article  ADS  Google Scholar 

  32. Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, Furusawa Y, Noda K (2010) Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol 55:67216737

    Article  Google Scholar 

  33. Kanai T, Endo M, Minohara S, Miyahara N, Ito HK, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, Furusawa Y, Ando K, Suzuki M, Soga F, Kawachi K (1999) Biophysical characteristics of himac clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys, 44(1):201–210

    Google Scholar 

  34. Kanai T, Furusawa Y, Fukutsu K, Itsukaichi H, Kasai KE, Ohara H (1997) Irradiation of mixed beam and design of spread-out bragg peak for heavy-ion radiotherapy. Radiat Res 147(1):78–85

    Article  Google Scholar 

  35. Kanai T, Matsufuji N, Miyamoto T, Mizoe J, Kamada T, Tsuji H, Kato H, Baba M, Tsujii H (2006) Examination of gye system for himac carbon therapy. Int J Radiat Oncol Biol Phys 61:65056

    Google Scholar 

  36. Kase Y, Kanai T, Matsufuji N, Furusawa Y, Elsasser T, Scholz M (2008) Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol 53:3759

    Article  Google Scholar 

  37. Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H (2006) Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res 166:62938

    Article  Google Scholar 

  38. Katz R (2003) The parameter-free track structure model of scholz and kraft for heavy-ion cross sections. Radiat Res 160(6):724–728

    Article  Google Scholar 

  39. Katz R, Ackerson B, Homayoonfar M, Sharma SC (1971) Inactivation of cells by heavy ion bombardment. Radiat Res 47(2):402425

    Article  Google Scholar 

  40. Kellerer A, Rossi H (1978) A generalized formulation of dual radiation action. Radiat Res 75:471–488

    Article  Google Scholar 

  41. Kellerer A, Rossi HH (1972) The theory of dual radiation action. Curr Topics Radiat Res Q 8(85):158

    Google Scholar 

  42. Kiefer J, Straaten H (1986) A model of ion track structure based on classical collision dynamics. Phys Med Biol 31:1201–1209

    Article  Google Scholar 

  43. Krämer M, Kraft G (1994) Calculations of heavy-ion track structure. Radiat Environ Biophys 33(3):91–109

    Article  Google Scholar 

  44. Krämer M, Scholz M (2006) Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol 51:1959–1970

    Article  Google Scholar 

  45. Lea DE (1955) Actions of radiation on living cells. Cambridge University Press, Cambridge

    Google Scholar 

  46. Lindborg L, Hultqvist M, Tedgren AC, Nikjoo H (2015) Nanodosimetry and rbe values in radiotherapy. Radiat Prot Dosim 166(1–4):339–342

    Article  Google Scholar 

  47. Nardo LD, Colautti P, Conte V, Baek WY, Grosswendt B, Tornielli G (2002) Ionization-cluster distributions of a-particles in nanometric volumes of propane: measurement and calculation. Radiat Environ Biophys 41:235256

    Google Scholar 

  48. Nikjoo H, Charlton D, Goodhead D (1994) Monte carlo track structure studies of energy deposition and calculation of initial dsb and rbe. Adv Space Res 14(10):161–180

    Article  ADS  Google Scholar 

  49. Pedicini P, Strigari L, Benassi M (2013) Estimation of a self-consistent set of radiobiological parameters from hypofractionated versus standard radiation therapy of prostate cancer. Int J Radiat Oncol Biol Phys 85(5):231–237

    Article  Google Scholar 

  50. Rossi HH, Failla G (1956) Tissue-equivalent ionization chambers. Nucleonics 14(2):32–37

    Google Scholar 

  51. Rossi HH, Rosenzweig W (1955) A device for the measurement of dose as a function of specific ionization. Radiology 64(3):404–411

    Article  Google Scholar 

  52. Scholz M, Kellerer A, Kraft-Weyrather W, Kraft G (1997) Computation of cell survival in heavy ion beams for therapy the model and its approximation. Radiat Environ Biophys 36:59–66

    Article  Google Scholar 

  53. Schulte R, Bashkirov V, Shchemelinin S, Garty G, Chechik R, Breskin A (2001) Modeling of radiation action based on nanodosimetric event spectra. Phys Med 17(Suppl 1):177–180

    Google Scholar 

  54. Srdo D (1970) Experimental technique of measurement of microscopic energy distribution in irradiated matter using rossi counters. Radiat Res 43(2):302–319

    Article  Google Scholar 

  55. Surdutovich E, Yakubovich A, Solovyov A (2013). Biodamage via shock waves initiated by irradiation with ions. Sci Rep 3(3):1289 (1–6)

    Google Scholar 

  56. Touati A, du Penhoat MAH, Bailly-Despiney I, Gobert F, Champion C, Fayard B, Abel F, L’Hoir A, Moulin J, Sabatier L, Chetioui A (1997) Biological implication of atomic collisions at the molecular level. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 132(2):276–279

    Article  ADS  Google Scholar 

  57. Touati A, du Penhoat MH, Bailly-Despiney I, Gobert F, Champion C, Fayard B, Abel F, L’Hoir A, Moulin J, Sabatier L, Chetioui A (2002) Biological effects induced by k photo-ionisation in and near constituent atoms of DNA. Radiat Protect Dosim 99(1–4):83–84

    Article  Google Scholar 

  58. Toulemonde M, Surdutovich E, Solovyov A (2009) Temperature and pressure spikes in ion-beam cancer therapy. Phys Rev E 80(3):031913(1–9)

    Google Scholar 

  59. Waligorski MPR, Hamm R, Katz R (1986) The radial distribution of dose around the path of a heavy ion in liquid water. Tracks Radiat Meas 11(6):309

    Article  Google Scholar 

  60. Waligrski MPR, Grzanka L, Korcyl M (2015) The principles of katz’s cellular track structure radiobiological model. Radiat Protect Dosim 166(1–4):49–55

    Article  Google Scholar 

  61. Wang C-KC, Zhang X (2006) A nanodosimetry-based linear-quadratic model of cell survival for mixed-let radiations. Phys Med Biol 51(23):6087

    Article  Google Scholar 

Download references

Acknowledgements

Some of the sections refer to work performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The author acknowledges the financial support by ITMO Cancer in the framework of Plan Cancer 2009–2013 and of the project no. PC201312, designated ‘Domaine de la physique, des mathématiques ou des sciences de l’ingénieur appliqués au Cancer’. He is also grateful to his collaborators, in particular M. Cunha, D. Dauvergne, C. Monini, J. Remillieux and E. Testa, for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Beuve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beuve, M. (2017). Biophysics Modeling to Optimize Ion Beam Cancer Therapy. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_13

Download citation

Publish with us

Policies and ethics