Skip to main content

Peripheral Nerve Disorders

  • Chapter
  • First Online:
Clinical Child Neurology

Abstract

A nerve is composed of axon (neural tissue) and connective tissue. Each axon in myelinated nerve fibers is surrounded by the endoneurium. Groups of nerve fibers form fascicles, surrounded by the perineurium, and groups of fascicles are surrounded by the internal and external epineurium. Impairments of the peripheral nervous system (PNS) lead to peripheral neuropathies that could be whether acquired (traumatic, drug toxicity, infection, etc.) or inherited, due to genetic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salih MA. Peripheral nerve disorders. In: Textbook of clinical pediatrics. Berlin: Springer; 2012. p. 3475–91.

    Google Scholar 

  2. Jung KH, Hyun PS. Sciatic nerve injection injury. J Int Med Res. 2014;42(4):887–97.

    Google Scholar 

  3. Namate C, Shabana M, Mumba P, Chimangeni S, Prime M, Cashman J. Aetiology of acquired ‘drop foot’ deformity in Malawian children: a case series of 50 patients. Trop Doct. 2012;42(4):229.

    PubMed  Google Scholar 

  4. Griffith AH. The role of immunization in the control of diphtheria. Dev Biol Stand. 1979;43:3–13.

    CAS  PubMed  Google Scholar 

  5. Byard RW. Diphtheria—‘The strangling angel’ of children. J Forensic Leg Med. 2013;20(2):65–8.

    PubMed  Google Scholar 

  6. Kanwal SK, Yadav D, Chhapola V, Kumar V. Post-diphtheritic neuropathy: a clinical study in paediatric intensive care unit of a developing country. Trop Doct. 2012;42(4):195–7.

    PubMed  Google Scholar 

  7. Manikyamba D, Satyavani A, Deepa P. Diphtheritic polyneuropathy in the wake of resurgence of diphtheria. J Pediatr Neurosci. 2014;10(4):331–4.

    Google Scholar 

  8. Mateen FJ, Bahl S, Khera A, Sutter RW. Detection of diphtheritic polyneuropathy by acute flaccid paralysis surveillance. India Emerg Infect Dis. 2013;19(9):1368–73.

    PubMed  Google Scholar 

  9. Zasada A. Corynebacterium diphtheriae infections currently and in the past. Przegl Dermatol. 2014;69(3):439–44.

    Google Scholar 

  10. Jablonka A, Behrens GM, Stange M, Dopfer C, Grote U, Hansen G, Schmidt RE, Happle C. Tetanus and diphtheria immunity in refugees in Europe in 2015. Infection. 2016;19:1–8.

    Google Scholar 

  11. Salih MAM, Suliman GI, Hassan HS. Complications of diphtheria seen during the 1978 outbreak in Khartoum. Ann Trop Paediatr. 1981;1:97–101.

    CAS  PubMed  Google Scholar 

  12. Salih MAM, Suliman GI, Hassan HS. Unusual sites of diphtheritic membrane and cervical oedema. SudanJPaediatr. 1984;3:52–62.

    Google Scholar 

  13. Salih MAM. A clinical profile of diphtheria in Sudanese children. Sudan J Paediatr. 1986;5:31–6.

    Google Scholar 

  14. Salih MAM, El Hakeem HS, Suliman GI, Khatim AS. An epidemiological study of the 1978 outbreak of diphtheria in Khartoum province. J Trop Pediatr. 1985;31:8–12.

    CAS  PubMed  Google Scholar 

  15. Logina I, Donaghy M. Diphtheritic polyneuropathy: a clinical study and comparison with Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 1999;67(4):433–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Loevinsohn BP. The changing age structure of diphtheria patients: evidence for the effectiveness of EPI in the Sudan. Bull World Health Organ. 1990;68(3):353–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. WHO—World Health Organization. Weekly epidemiological record; WHO [Internet] 2015, n° 36, 90th year, p. 461–476. Washington: The Organization. http://www.who.int/wer/2015/wer9036.pdf. Accessed 7 Oct 2016.

  18. Santos SD, Penna GO, Costa MD, Natividade MS, Teixeira MG. Leprosy in children and adolescents under 15 years old in an urban centre in Brazil. Mem Inst Oswaldo Cruz. 2016;111(6):359–64.

    PubMed  PubMed Central  Google Scholar 

  19. Schreuder PA, Noto S, Richardus JH. Epidemiologic trends of leprosy for the 21st century. Clin Dermatol. 2016;34:24–31.

    PubMed  Google Scholar 

  20. Cook MJ. Lyme borreliosis: a review of data on transmission time after tick attachment. Int J Gen Med. 2015;8:1–8. https://doi.org/10.2147/IJGM.S73791.

    Article  PubMed  Google Scholar 

  21. Centers for Disease Control and Prevention (CDC). Lyme disease data. September 24, 2015. http://www.cdc.gov/lyme/stats/index.html?s_cid=cs_281. Accessed 8 Oct 2016.

  22. Centers for Disease Control and Prevention (CDC). Lyme disease—United States, 2003–2005. Morb Mortal Wkly Rep. 2007;56(23):573.

    Google Scholar 

  23. Huppertz HI. Childhood Lyme borreliosis in Europe. Eur J Pediatr. 1990;149(12):814–21.

    CAS  PubMed  Google Scholar 

  24. Hehir MK 2nd, Logigian EL. Infectious neuropathies. Continuum (Minneapolis, Minn.). 2014;20(5 Peripheral Nervous System Disorders):1274–92.

    Google Scholar 

  25. Agarwal R, Sze G. Neuro-lyme disease: MR imaging findings. Radiology. 1999;253:167–73.

    Google Scholar 

  26. Dersch R, Hottenrott T, Schmidt S, Sommer H, Huppertz HI, Rauer S, Meerpohl JJ. Efficacy and safety of pharmacological treatments for Lyme neuroborreliosis in children: a systematic review. BMC Neurol. 2016;16(1):189.

    PubMed  PubMed Central  Google Scholar 

  27. Hendaus MA, Qaqish RM, Alhammadi AH. Neurobrucellosis in children. Asian Pac J Trop Biomed. 2015;5(2):158–61.

    Google Scholar 

  28. Salih MA, Abdel-Gader AM, Al-Jarallah AA, Kentab AY, Gadelrab MO, Alorainy IA, et al. Infectious and inflammatory disorders of the circulatory systems as risk factors for stroke in Saudi children. Saudi Med J. 2006;27(Suppl 1):S41–52.

    PubMed  Google Scholar 

  29. Wilmshurst JM. Diagnosis and management of pediatric peripheral neuropathies in resource-poor settings. Future Neurol. 2013;8(2):133–48.

    CAS  Google Scholar 

  30. Kandula T, Park SB, Cohn RJ, Krishnan AV, Farrar MA. Pediatric chemotherapy induced peripheral neuropathy: a systematic review of current knowledge. Cancer Treat Rev. 2016;50:118–28.

    CAS  PubMed  Google Scholar 

  31. Lavoie SE, Li L, Chiang C, Thomas K, Hutchinson RJ, Wells EM, et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst. 2015;20(1):37–46.

    Google Scholar 

  32. Lanphear BP, Lowry JA, Ahdoot S, Baum CR, Bernstein AS, Bole A, et al. Prevention of childhood lead toxicity. Pediatrics. 2016;20:e20161493.

    Google Scholar 

  33. Hamad MH, Adeel AA, Alhaboob AAN, Ashri AM, Salih MA. Acute poisoning in a child following topical treatment of head lice (pediculosis capitis) with an organophosphate pesticide. Sudan J Paediatr. 2016;16(1):63–6.

    PubMed  PubMed Central  Google Scholar 

  34. Madhusudanan M, Menon MK, Ummer K, Radhakrishnanan K. Clinical and etiological profile of tropical ataxic neuropathy in Kerala. South India Eur Neurol. 2007;60(1):21–6.

    Google Scholar 

  35. BMJ Best Practice. Guillain Barre Syndrome. 2016 http://bestpractice.bmj.com/best-practice/monograph-pdf/176.pdf. Accessed 13 Oct 2016.

  36. Roodbol J, de Wit MC, Walgaard C, de Hoog M, Catsman-Berrevoets CE, Jacobs BC. Recognizing Guillain-Barre syndrome in preschool children. Neurology. 2011;76(9):807–10.

    CAS  PubMed  Google Scholar 

  37. Dimachkie MM, Barohn RJ. Guillain-Barre syndrome and variants. Neurol Clin. 2013;31(2):491–510.

    PubMed  PubMed Central  Google Scholar 

  38. Babiker MOE. The boy who stopped walking. Sudan J Paediatr. 2015;15(1):65–8.

    Google Scholar 

  39. Nishimoto Y, Susuki K, Yuki N. Serologic marker of acute motor axonal neuropathy in childhood. Pediatr Neurol. 2008;39(1):67–70.

    PubMed  Google Scholar 

  40. Schessl J, Koga M, Funakoshi K, Kirschner J, Muellges W, Weishaupt A, et al. Prospective study on anti-ganglioside antibodies in childhood Guillain-Barré syndrome. Arch Dis Child. 2007;92(1):48–52.

    CAS  PubMed  Google Scholar 

  41. Maloney JA, Mirsky DM, Messacar K, Dominguez SR, Schreiner T, Stence NV. MRI findings in children with acute flaccid paralysis and cranial nerve dysfunction occurring during the 2014 enterovirus D68 outbreak. Am J Neuroradiol. 2015;36(2):245–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Adeel AAA. Spinal cord schistosomiasis. Sudan J Paediatr. 2015;15(2):23–8.

    PubMed  PubMed Central  Google Scholar 

  43. Hughes RAC, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2014;(9):CD002063. https://doi.org/10.1002/14651858.CD002063.pub6.

  44. Hughes RAC, van Doorn PA. Corticosteroids for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2012;(8):CD001446. https://doi.org/10.1002/14651858.CD001446.pub4.

  45. Korinthenberg R, Schessl J, Kirschner J, Mönting JS. Intravenously administered immunoglobulin in the treatment of childhood Guillain-Barré syndrome: a randomized trial. Pediatrics. 2005;116(1):8–14.

    PubMed  Google Scholar 

  46. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. The Lancet. 2016;388(10045):717–27.

    Google Scholar 

  47. Finsterer J. Systemic and non-systemic vasculitis affecting the peripheral nerves. Acta Neurol Belg. 2009;109(2):100–13.

    CAS  PubMed  Google Scholar 

  48. Blaes F. Diagnosis and therapy for peripheral vasculitic neuropathy. In: Systemic vasculitides: current status and perspectives 2016. Cham: Springer International Publishing; 2016. p. 259–80.

    Google Scholar 

  49. Said G, Lacroix C. Primary and secondary vasculitic neuropathy. J Neurol. 2005;252(6):633–41.

    PubMed  Google Scholar 

  50. Agadi JB, Raghav G, Mahadevan A, Shankar SK. Usefulness of superficial peroneal nerve/peroneus brevis muscle biopsy in the diagnosis of vasculitic neuropathy. J Clin Neurosci. 2012;19(10):1392–6.

    CAS  PubMed  Google Scholar 

  51. Blaes F. Diagnosis and therapeutic options for peripheral vasculitic neuropathy. Ther Adv Musculoskelet Dis. 2015;7(2):45–55. https://doi.org/10.1177/1759720X14566617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol. 2012;3(5):204–14. https://doi.org/10.1159/000343487. Epub 2012 Oct 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Azzedine H, Durosier G, Tazir M, et al. Autosomal recessive Charcot-Marie-Tooth families linked to the 1q21 locus. 51st annual meeting of the American Society of Human Genetics, San Diego (USA): 13th–18th October 2001. Abstract in: Am J Hum Genet 2001;69(Suppl):1911.

    Google Scholar 

  54. Mathis S, Goizet C, Tazir M, Magdelaine C, Lia AS, Magy L, Vallat JM. Charcot-Marie-Tooth diseases: an update and some new proposals for the classification. J Med Genet. 2015;52(10):681–90.

    PubMed  Google Scholar 

  55. Barreto LC, Oliveira FS, Nunes PS, de França CI, Garcez CA, Goes GM, Neves EL, de Souza SQ, de Souza AA. Epidemiologic study of Charcot-Marie-Tooth disease: a systematic review. Neuroepidemiology. 2016;46(3):157–65.

    PubMed  Google Scholar 

  56. Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin Genet. 1974;6(2):98–118.

    CAS  PubMed  Google Scholar 

  57. Martin JJ, Brice A, Van Broeckhoven C. 4th workshop of the European CMT-Consortium—62nd ENMC international workshop: rare forms of Charcot-Marie-Tooth disease and related disorders. 16–18 October 1998, Soestduinen, The Netherlands. Neuromuscul Disord. 1999;9(4):279–87.

    Google Scholar 

  58. Laššuthová P, ŠafkaBrožková D, Krůtová M, et al. Improving diagnosis of inherited peripheral neuropathies through gene panel analysis. Orphanet J Rare Dis. 2016;11(1):118. https://doi.org/10.1186/s13023-016-0500-5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ylikallio E, Woldegebriel R, Tumiati M, Isohanni P, Ryan MM, Stark Z, Walsh M, Sawyer SL, Bell KM, Oshlack A, Lockhart PJ, Shcherbii M, Estrada-Cuzcano A, Atkinson D, Hartley T, Tetreault M, Cuppen I, van der Pol WL, Candayan A, Battaloglu E, Parman Y, van Gassen KLI, van den Boogaard MH, Boycott KM, Kauppi L, Jordanova A, Lönnqvist T, Tyynismaa H. MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability. Brain. 2017;140(8):2093–103.

    PubMed  Google Scholar 

  60. Karakaya M, Mazaheri N, Polat I, Bharucha-Goebel D, Donkervoort S, Maroofian R, Shariati G, Hoelker I, Monaghan K, Winchester S, Zori R, Galehdari H, Bönnemann CG, Yis U, Wirth B. Biallelic MCM3AP mutations cause Charcot-Marie-Tooth neuropathy with variable clinical presentation. Brain. 2017;140(10):e65. https://doi.org/10.1093/brain/awx222.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Baets J, Deconinck T, De Vriendt E, Zimon M, Yperzeele L, Van Hoorenbeeck K, et al. Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain. 2011;134:266476.

    Google Scholar 

  62. Bird TD. Charcot-Marie-Tooth Hereditary Neuropathy Overview. 1998 Sep 28 [Updated 2016 Sep 1]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. 2016. https://www.ncbi.nlm.nih.gov/books/NBK1358/

  63. Bird TD. Hereditary Neuropathy with Liability to Pressure Palsies. 1998 Sep 28 [Updated 2014 Sep 25]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;1993–2016. 2014. https://www.ncbi.nlm.nih.gov/books/NBK1392/

  64. Azzedine H, Ravisé N, Verny C, Gabrëels-Festen A, Lammens M, Grid D, Vallat JM, Durosier G, Senderek J, Nouioua S, Hamadouche T, Bouhouche A, Guilbot A, Stendel C, Ruberg M, Brice A, Birouk N, Dubourg O, Tazir M, LeGuern E. Spine deformities in Charcot-Marie-Tooth 4C caused by SH3TC2 gene mutations. Neurology. 2006;67(4):602–6.

    CAS  PubMed  Google Scholar 

  65. Bouhouche A, Birouk N, Azzedine H, Benomar A, Durosier G, Ente D, Muriel MP, Ruberg M, Slassi I, Yahyaoui M, Dubourg O, Ouazzani R, LeGuern E. Autosomal recessive axonal Charcot-Marie-Tooth disease (ARCMT2): phenotype-genotype correlations in 13 Moroccan families. Brain. 2007;130(Pt 4):1062–75.

    PubMed  Google Scholar 

  66. Gabreëls-Festen A, van Beersum S, Eshuis L, LeGuern E, Gabreëls F, van Engelen B, Mariman E. Study on the gene and phenotypic characterisation of autosomal recessive demyelinating motor and sensory neuropathy (Charcot-Marie-Tooth disease) with a gene locus on chromosome 5q23-q33. J Neurol Neurosurg Psychiatry. 1999;66(5):569–74.

    PubMed  PubMed Central  Google Scholar 

  67. Kessali M, Zemmouri R, Guilbot A, Maisonobe T, Brice A, LeGuern E, Grid D. A clinical, electrophysiologic, neuropathologic, and genetic study of two large Algerian families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease. Neurology. 1997;48(4):867–73.

    CAS  PubMed  Google Scholar 

  68. Tazir M, Azzedine H, Assami S, Sindou P, Nouioua S, Zemmouri R, Hamadouche T, Chaouch M, Feingold J, Vallat JM, Leguern E, Grid D. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain. 2004;127(Pt 1):154–63.

    CAS  PubMed  Google Scholar 

  69. Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Theriol. 2017;133(4):493–515.

    CAS  Google Scholar 

  70. Dubourg O, Azzedine H, Verny C, Durosier G, Birouk N, Gouider R, Salih M, Bouhouche A, Thiam A, Mayer M, Ruberg M. Autosomal-recessive forms of demyelinating Charcot-Marie-Tooth disease. Neuromol Med. 2006;8(1–2):75–85.

    CAS  Google Scholar 

  71. Wilmshurst JM, Ouvrier R. Hereditary peripheral neuropathies of childhood: an overview for clinicians. Neuromuscul Disord. 2011;21(11):763–75.

    PubMed  Google Scholar 

  72. Azzedine H, LeGuern E, Salih MA. Charcot-Marie-Tooth Neuropathy Type 4C. 2008 Mar 31 (Updated 2015 Oct 15]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1340/

  73. Cogli L, Piro F, Bucci C. Rab7 and the CMT2B disease. Biochem Soc Trans. 2009;37(Pt 5):1027–31.

    CAS  PubMed  Google Scholar 

  74. Bird TD. Charcot-Marie-Tooth Neuropathy Type 1. 1998 Aug 31 [Updated 2015 Mar 26]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. 2015. https://www.ncbi.nlm.nih.gov/books/NBK1205/

  75. Chrestian N, McMillan H, Poulin C, Campbell C, Vajsar J. Hereditary neuropathy with liability to pressure palsies in childhood: case series and literature update. Neuromuscul Disord. 2015;25(9):693–8.

    PubMed  Google Scholar 

  76. Azzedine H, Ruberg M, Ente D, Gilardeau C, Périé S, Wechsler B, Brice A, LeGuern E, Dubourg O. Variability of disease progression in a family with autosomal recessive CMT associated with a S194X and new R310Q mutation in the GDAP1 gene. Neuromuscul Disord. 2003;13(4):341–6.

    CAS  PubMed  Google Scholar 

  77. Sevilla T, Jaijo T, Nauffal D, Collado D, Chumillas MJ, Vilchez JJ, Muelas N, Bataller L, Domenech R, Espinós C, Palau F. Vocal cord paresis and diaphragmatic dysfunction are severe and frequent symptoms of GDAP1-associated neuropathy. Brain. 2008;131:3051–61.

    PubMed  Google Scholar 

  78. Bolino A, Levy ER, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou RK, Hausmanowa-Petrusewicz I, Mandich P, Gambardella A. Genetic refinement and physical mapping of the CMT4B gene on chromosome 11q22. Genomics. 2000;63(2):271–8.

    CAS  PubMed  Google Scholar 

  79. Bolino A, Muglia M, Conforti FL, et al. Charcot-Marie-Tooth type4B is caused by mutations in the gene encoding myotubularin-related protein 2. Nat Genet. 2000;25:17–9.

    CAS  PubMed  Google Scholar 

  80. Salih MA, Maisonobe T, Kabiraj M, Al Rayess M, Al-Turaiki MH, Akbar M, Tahan A, Urtizberea JA, Hamadouche T, Guilbot A, Brice A. Autosomal recessive hereditary neuropathy with focally folded myelin sheaths and linked to chromosome 11q23: a distinct and homogeneous entity. Neuromuscul Disord. 2000;10(1):10–5.

    CAS  PubMed  Google Scholar 

  81. Azzedine H, Bolino A, Taïeb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T, Gouider R, Ravazzolo R, Brice A, Laporte J, LeGuern E. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003;72(5):1141–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Alazami AM, Alzahrani F, Bohlega S, Alkuraya FS. SET binding factor 1 (SBF1) mutation causes Charcot-Marie-tooth disease type 4B3. Neurology. 2014;82:1665–6.

    PubMed  Google Scholar 

  83. Siskind CE, Panchal S, Smith CO, Feely SM, Dalton JC, Schindler AB, Krajewski KM. A review of genetic counseling for Charcot Marie Tooth disease (CMT). J Genet Couns. 2013;22(4):422–36. https://doi.org/10.1007/s10897-013-9584-4. Epub 2013 April 21. Review

    Article  PubMed  Google Scholar 

  84. Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015;10:148–61.

    CAS  PubMed  Google Scholar 

  85. Alkuraya FS. Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience. Clin Genet. 2013;84(3):203–8.

    CAS  PubMed  Google Scholar 

  86. Azzedine H, Zavadakova P, Planté-Bordeneuve V, Vaz Pato M, Pinto N, Bartesaghi L, Zenker J, Poirot O, Bernard-Marissal N, Arnaud Gouttenoire E, Cartoni R, Title A, Venturini G, Médard JJ, Makowski E, Schöls L, Claeys KG, Stendel C, Roos A, Weis J, Dubourg O, Leal Loureiro J, Stevanin G, Said G, Amato A, Baraban J, LeGuern E, Senderek J, Rivolta C, Chrast R. PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease. Hum Mol Genet. 2013;22(20):4224–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Spagnoli C, Iodice A, Salerno GG, Frattini D, Bertani G, Fusco C. Hereditary neuropathy with liability to pressure palsies in childhood: Case series and literature update. Neuromuscul Disord. 2016;26(6):394.

    PubMed  Google Scholar 

  88. Kararizou E, Karandreas N, Davaki P, Davou R, Vassilopoulos D. Polyneuropathies in teenagers: a clinicopathological study of 45 cases. Neuromuscul Disord. 2006;16(5):304–7.

    CAS  PubMed  Google Scholar 

  89. Mehta A, Hughes DA. Fabry disease. 2002 Aug 5 [Updated 2017 Jan 5]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1292/

  90. Kraemer KH, DiGiovanna JJ. Xeroderma pigmentosum. 2003 Jun 20 [Updated 2016 Sep 29]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1397/

  91. Hijazi H, Salih MA, Hamad MH, Hassan HH, Salih SB, Mohamed KA, Mukhtar MM, Karrar ZA, Ansari S, Ibrahim N, Alkuraya FS. Pellagra-like condition is xeroderma pigmentosum/Cockayne syndrome complex and niacin confers clinical benefit. Clin Genet. 2014;87(1):56–61.

    Google Scholar 

  92. Natale V, Raquer H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J Rare Dis. 2017;12:65.

    PubMed  PubMed Central  Google Scholar 

  93. Chessa L, Micheli R, Molinaro A. Focusing new ataxia telangiectasia therapeutic approaches. J Rare Dis Diagn Ther. 2016;2:2.

    Google Scholar 

  94. Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hail J, Koenig M. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet. 2005;14:307–18.

    CAS  PubMed  Google Scholar 

  95. Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, Mao Y, Quiocho FA, Roa BB, Nakagawa M, Stockton DW. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet. 2002;32(2):267–72.

    CAS  PubMed  Google Scholar 

  96. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Fritsch M, Arning L, Synofzik M, Schöls L. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132(Pt 10):2688–98.

    CAS  PubMed  Google Scholar 

  97. Ramchandren S. Charcot-Marie-Tooth disease and other genetic polyneuropathies. Continuum (Minneap Minn). 2017;23(5):1360–77.

    Google Scholar 

  98. Salih MA, Mundwiller E, Khan AO, AlDrees A, Elmalik SA, Hassan HH, Al-Owain M, Alkhalidi HM, Katona I, Kabiraj MM, Chrast R, Kentab AY, Alzaidan H, Rodenburg RJ, Bosley TM, Weis J, Koenig M, Stevanin G, Azzedine H. New findings in a global approach to dissect the whole phenotype of PLA2G6 gene mutations. PLoS One. 2013;8(10):e76831.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossor AM, Evans MR, Reilly MM. A practical approach to the genetic neuropathies. Pract Neurol. 2015;15(3):187–98.

    PubMed  Google Scholar 

  100. Vallat JM, Funalot B, Magy L. Nerve biopsy: requirements for diagnosis and clinical value. Acta Neuropathol. 2011;121(3):313–26.

    PubMed  Google Scholar 

  101. Liao JP, Waclawik AJ. Nerve root hypertrophy in CMT type 1A. Neurology. 2004;62(5):783.

    PubMed  Google Scholar 

  102. Goedee HS, Brekelmans GJ, van Asseldonk JT, Beekman R, Mess WH, Visser LH. High resolution sonography in the evaluation of the peripheral nervous system in polyneuropathy—a review of the literature. Eur J Neurol. 2013;20(10):1342–51.

    CAS  PubMed  Google Scholar 

  103. Walker FO. Ultrasonography in peripheral nervous system diagnosis. Continuum (Minneap Minn). 2017;23(5):1276–94.

    Google Scholar 

  104. Gaeta M, Mileto A, Mazzeo A, Minutoli F, Di Leo R, Settineri N, et al. MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease. Skeletal Radiol. 2012;41(5):515–24.

    PubMed  Google Scholar 

  105. Kuhlenbäumer G, Timmerman V, Bomont P. Giant axonal neuropathy. 2003 Jan 9 [Updated 2014 Oct 9]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1136/

  106. Rudnik-Schöneborn S, Auer-Grumbach M, Senderek J. Hereditary neuropathies: update 2017. Neuropediatrics. 2017;48(4):282–93.

    PubMed  Google Scholar 

  107. Salih MA, Ahlsten G, Stålberg E, Schmidt R, Sunnegårdh J, Michaelsson M, Gamstorp I. Friedreich’s ataxia in 13 children: presentation and evolution with neurophysiologic, electrocardiographic, and echocardiographic features. J Child Neurol. 1990;5(4):321–6.

    CAS  PubMed  Google Scholar 

  108. Fridman V, Bundy B, Reilly MM, Pareyson D, Bacon C, Burns J, Day J, Feely S, Finkel RS, Grider T, Kirk CA. CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis. J Neurol Neurosurg Psychiatry. 2015;86(8):873–8.

    CAS  PubMed  Google Scholar 

  109. Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017;22(4):615–24.

    CAS  PubMed  Google Scholar 

  110. Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017;136(11–12):1419–29.

    PubMed  Google Scholar 

  111. Monies D, Abouelhoda M, AlSayed M, Alhassnan Z, Alotaibi M, Kayyali H, et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017;9:1–9.

    Google Scholar 

  112. Maystadt I, Zarhrate M, Leclair-Richard D, Estournet B, Barois A, Renault F, Routon MC, Durand MC, Lefebvre S, Munnich A, Verellen-Dumoulin C, Viollet L. A gene for an autosomal recessive lower motor neuron disease with childhood onset maps to 1p36. Neurology. 2006;67:120–4.

    CAS  PubMed  Google Scholar 

  113. Maystadt I, Rezsöhazy R, Barkats M, Duque S, Vannuffel P, Remacle S, Lambert B, Najimi M, Sokal E, Munnich A, Viollet L, Verellen-Dumoulin C. The nuclear factor κB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am J Hum Genet. 2007;81:67–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dowling JJ, Gonorazky HD, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: the future is now. Am J Med Genet A. 2018;176(4):804–41.

    PubMed  Google Scholar 

  115. Pareyson D, Saveri P, Pisciotta C. New developments in Charcot–Marie–Tooth neuropathy and related diseases. Curr Opin Neurol. 2017;30(5):471–80.

    CAS  PubMed  Google Scholar 

  116. Lee H-S, Kim MJ, Ko DS, Jeon EJ, Kim JY, Kang IS. Preimplantation genetic diagnosis for Charcot-Marie-Tooth disease. Clin Exp Reprod Med. 2013;40(4):163–8. https://doi.org/10.5653/cerm.2013.40.4.163.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dyck PJ. Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, editors. Peripheral neuropathy. Philadelphia: W.B. Saunders; 1993. p. 1065–93.

    Google Scholar 

  118. Davidson G, Murphy S, Polke J, Laura M, Salih M, Muntoni F, Blake J, Brandner S, Davies N, Horvath R, Price S. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol. 2012;259(8):1673–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mroczek M, Kabzińska D, Kochański A. Molecular pathogenesis, experimental therapy and genetic counseling in hereditary sensory neuropathies. Acta Neurobiol Exp. 2014;75(2):126–43.

    Google Scholar 

  120. Othman SA, Malik AA. Congenital insensitivity to pain with anhidrosis in Sudanese children. Sudanese J Paediatr. 2016;16(2):80–5.

    Google Scholar 

  121. Pérez-López LM, Cabrera-González M, Gutiérrez-de la Iglesia D, Ricart S, Knörr-Giménez G. Update review and clinical presentation in congenital insensitivity to pain and anhidrosis. Case Rep Pediatr. 2015;2015:589852.

    PubMed  PubMed Central  Google Scholar 

  122. Houlden H, King R, Blake J, Groves M, Love S, Woodward C, Hammans S, Nicoll J, Lennox G, O'Donovan DG, Gabriel C. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain: a journal of neurology. 2006;129(Pt 2):411–25.

    Google Scholar 

  123. Chen Y-C, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, Strom TM, Samara C, Moore AW, Cho LT-Y, Young GT, Weiss C, Schabhuttl M, et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet. 2015;47:803–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kurth I. Hereditary sensory and autonomic neuropathy type II. 2010 Nov 23 [Updated 2015 Feb 19]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK49247/

  125. Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB, Elpeleg O. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol. 2012;71:569–72.

    CAS  PubMed  Google Scholar 

  126. Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, Ebbinghaus M, Goral RO, Stodberg T, Hennings JC, Bergmann M, Altmuller J, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45:1399–404.

    CAS  PubMed  Google Scholar 

  127. Zhang S, Sharif SM, Chen Y-C, Valente E-M, Ahmed M, Sheridan E, Bennett C, Woods G. Clinical features for diagnosis and management of patients with PRMD12 congenital insensitivity to pain. J Med Genet. 2016;53:533–5.

    PubMed  Google Scholar 

  128. Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet. 2006;43(5):441–3. https://doi.org/10.1136/jmg.2005.039230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee MJ, Stephenson DA, Groves MJ, Sweeney MG, Davis MB, An SF, Houlden H, Salih MA, Timmerman V, de Jonghe P, Auer-Grumbach M. Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene. Hum Mol Genet. 2003;12(15):1917–25.

    CAS  PubMed  Google Scholar 

  130. Axelrod FB, Gold-von SG. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis. 2007;2:39.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa A. M. Salih .

Editor information

Editors and Affiliations

41.1 Electronic Supplementary Material

A 4-year-old girl, with acute lymphoblastic leukemia (ALL), who developed toxicity following vincristine therapy (Fig. 41.3a, b). She could walk after 7 months, and the video, taken 9 months later, shows normal gait (MOV 17021 kb)

Resuming normal gait in a 10-year-old boy who had Guillain-Barré syndrome a year ago. During the acute illness, he required ventilation for 22 days (AVI 2441 kb)

An 11-year-old boy with peripheral nervous system vasculitis associated with Churg-Strauss syndrome (Fig. 41.9). The video shows the asymmetric involvement of the lower limbs with right foot drop and high steppage gait (MOV 1567 kb)

High steppage gait, pes planus, and foot drop in 2.5-year-old twins who have CMT4A due to GDAP1 gene mutation (AVI 9962 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salih, M.A.M., Azzedine, H. (2020). Peripheral Nerve Disorders. In: Salih, M.A. (eds) Clinical Child Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-43153-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43153-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43152-9

  • Online ISBN: 978-3-319-43153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics