Skip to main content

Lipid Droplets and Metabolic Pathways Regulate Steroidogenesis in the Corpus Luteum

  • Chapter
  • First Online:
The Life Cycle of the Corpus Luteum

Abstract

This review focuses on recent advances in the understanding of metabolic processes used by the corpus luteum to control steroidogenesis and other cellular functions. The corpus luteum has abundant lipid droplets that are believed to store cholesteryl esters and triglycerides. Recent studies in other tissues indicate that cytoplasmic lipid droplets serve as platforms for cell signaling and interactions with other organelles. Lipid droplets are also critical organelles for controlling cellular metabolism. Emerging evidence demonstrates that LH via activation of the cAMP and the protein kinase A (PKA) signaling pathway stimulates the phosphorylation and activation of hormone-sensitive lipase (HSL), an enzyme that hydrolyzes cholesteryl esters stored in lipid droplets to provide cholesterol for steroidogenesis and fatty acids for utilization by mitochondria for energy production. The energy sensor AMP-activated protein kinase (AMPK) can inhibit steroidogenesis by interrupting metabolic pathways that provide cholesterol to the mitochondria or the expression of genes required for steroidogenesis. In addition to lipid droplets, autophagy also contributes to the regulation of the metabolic balance of the cell by eliminating damaged organelles and providing cells with essential nutrients during starvation. Autophagy in luteal cells is regulated by signaling pathways that impact AMPK activity and lipid droplet homeostasis. In summary, a number of signaling pathways converge on luteal lipid droplets to regulate steroidogenesis and metabolism. Knowledge of metabolic pathways in luteal cells is fundamental to understanding events that control the function and lifespan of the corpus luteum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121:2102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thiam AR, Farese Jr RV, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013;14:775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Waltermann M, Steinbuchel A. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol. 2005;187:3607–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Natarajan SK, Rasineni K, Ganesan M, Feng D, McVicker BL, McNiven MA, Osna NA, Mott JL, Casey CA, Kharbanda KK. Structure, function and metabolism of hepatic and adipose tissue lipid droplets: implications in alcoholic liver disease. Curr Mol Pharmacol. 2015 Aug 17. [Epub ahead of print] PMID: 26278390.

    Google Scholar 

  5. D’Souza K, Nzirorera C, Kienesberger PC. Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta. 2016 Oct;1860 (10):1513–24. doi:10.1016/j.bbalip.2016.02.016.

  6. Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell. 2012;3:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C. Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem. 1995;270:16970–3.

    Article  CAS  PubMed  Google Scholar 

  8. Shen WJ, Azhar S, Kraemer FB. Lipid droplets and steroidogenic cells. Exp Cell Res. 2016;340:209–14.

    Article  CAS  PubMed  Google Scholar 

  9. Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim Biophys Acta. 2014 Mar;1842(3):393–401. doi:10.1016/j.bbadis.2013.05.007.

  10. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beller M, Thiel K, Thul PJ, Jackle H. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 2010;584:2176–82.

    Article  CAS  PubMed  Google Scholar 

  12. Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem. 2012;287:2273–9.

    Article  CAS  PubMed  Google Scholar 

  13. Farese Jr RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 2009;139:855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol. 2012;24:509–16.

    Article  CAS  PubMed  Google Scholar 

  15. Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J, Boren J. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta. 1791;2009:448–58.

    Google Scholar 

  16. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48:2547–59.

    Article  CAS  PubMed  Google Scholar 

  17. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res. 2010;51:468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paul A, Chan L, Bickel PE. The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep. 2008;10:461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest. 2008;118:2808–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, Crunk AE, Mansur A, Graham CE, Bowman TA, Greenberg AS. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res. 2013;54:1346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C. Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem. 2006;281:34341–8.

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Chang B, Wu X, Li L, Sleeman M, Chan L. Inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice. Am J Physiol Endocrinol Metab. 2013;304:E770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seachord CL, VandeVoort CA, Duffy DM. Adipose differentiation-related protein: a gonadotropin- and prostaglandin-regulated protein in primate periovulatory follicles. Biol Reprod. 2005;72:1305–14.

    Article  CAS  PubMed  Google Scholar 

  24. Yang X, Dunning KR, Wu LL, Hickey TE, Norman RJ, Russell DL, Liang X, Robker RL. Identification of perilipin-2 as a lipid droplet protein regulated in oocytes during maturation. Reprod Fertil Dev. 2010;22:1262–71.

    Article  CAS  PubMed  Google Scholar 

  25. Feingold KR, Kazemi MR, Magra AL, McDonald CM, Chui LG, Shigenaga JK, Patzek SM, Chan ZW, Londos C, Grunfeld C. ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. Atherosclerosis. 2010;209:81–8.

    Article  CAS  PubMed  Google Scholar 

  26. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31:1120–4.

    Article  CAS  PubMed  Google Scholar 

  27. Kraemer FB. Adrenal cholesterol utilization. Mol Cell Endocrinol. 2007;265-266:42–5.

    Article  CAS  PubMed  Google Scholar 

  28. Osterlund T. Structure-function relationships of hormone-sensitive lipase. Eur J Biochem. 2001;268:1899–907.

    Article  CAS  PubMed  Google Scholar 

  29. Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta. 1791;2009:419–40.

    Google Scholar 

  30. Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene (Amst). 2011;477:1–11.

    Article  CAS  Google Scholar 

  31. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97.

    Article  CAS  PubMed  Google Scholar 

  32. Krintel C, Morgelin M, Logan DT, Holm C. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 2009;276:4752–62.

    Article  CAS  PubMed  Google Scholar 

  33. Su CL, Sztalryd C, Contreras JA, Holm C, Kimmel AR, Londos C. Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J Biol Chem. 2003;278:43615–9.

    Article  CAS  PubMed  Google Scholar 

  34. Shen WJ, Patel S, Natu V, Kraemer FB. Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry. 1998;37:8973–9.

    Article  CAS  PubMed  Google Scholar 

  35. Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998;273:215–21.

    Article  CAS  PubMed  Google Scholar 

  36. Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC, Obin MS, Greenberg AS. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem. 2006;281:15837–44.

    Article  CAS  PubMed  Google Scholar 

  37. Watt MJ, Holmes AG, Pinnamaneni SK, Garnham AP, Steinberg GR, Kemp BE, Febbraio MA. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab. 2006;290:E500–8.

    Article  CAS  PubMed  Google Scholar 

  38. Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM, Kimmel AR. Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans. 1995;23:611–5.

    Article  CAS  PubMed  Google Scholar 

  39. Lobo MV, Huerta L, Arenas MI, Busto R, Lasuncion MA, Martin-Hidalgo A. Hormone-sensitive lipase expression and IHC localization in the rat ovary, oviduct, and uterus. J Histochem Cytochem. 2009;57:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kraemer FB, Shen WJ, Harada K, Patel S, Osuga J, Ishibashi S, Azhar S. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol. 2004;18:549–57.

    Article  CAS  PubMed  Google Scholar 

  41. Kraemer FB, Shen WJ, Natu V, Patel S, Osuga J, Ishibashi S, Azhar S. Adrenal neutral cholesteryl ester hydrolase: identification, subcellular distribution, and sex differences. Endocrinology. 2002;143:801–6.

    Article  CAS  PubMed  Google Scholar 

  42. Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem. 2013;288:8505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen WJ, Patel S, Natu V, Hong R, Wang J, Azhar S, Kraemer FB. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J Biol Chem. 2003;278:43870–6.

    Article  CAS  PubMed  Google Scholar 

  44. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta. 1791;2009:646–58.

    Google Scholar 

  45. Arrese EL, Saudale FZ, Soulages JL. Lipid droplets as signaling platforms linking metabolic and cellular functions. Lipid Insights. 2014;7:7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murphy S, Martin S, Parton RG. Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta. 1791;2009:441–7.

    Google Scholar 

  47. Wu CC, Howell KE, Neville MC, Yates 3rd JR, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 2000;21:3470–82.

    Article  CAS  PubMed  Google Scholar 

  48. Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 2004;279:46835–42.

    Article  CAS  PubMed  Google Scholar 

  49. Cho SY, Shin ES, Park PJ, Shin DW, Chang HK, Kim D, Lee HH, Lee JH, Kim SH, Song MJ, Chang IS, Lee OS, Lee TR. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem. 2007;282:2456–65.

    Article  CAS  PubMed  Google Scholar 

  50. Turro S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 2006;7:1254–69.

    Google Scholar 

  51. Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res. 2011;10:4757–68.

    Article  CAS  PubMed  Google Scholar 

  52. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R. Association of stomatin with lipid bodies. J Biol Chem. 2004;279:23699–709.

    Article  CAS  PubMed  Google Scholar 

  53. Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, Higashi Y, Kojima S, Takano T. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta. 1644;2004:47–59.

    Google Scholar 

  54. Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem. 2006;139:921–30.

    Article  CAS  PubMed  Google Scholar 

  55. Khor VK, Ahrends R, Lin Y, Shen WJ, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S, Kraemer FB. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS One. 2014;9, e105047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yamaguchi T, Fujikawa N, Nimura S, Tokuoka Y, Tsuda S, Aiuchi T, Kato R, Obama T, Itabe H. Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: protein profiles and the morphological change induced by hormone stimulation. Biochim Biophys Acta. 1851;2015:1285–95.

    Google Scholar 

  57. Wang W, Wei S, Li L, Su X, Du C, Li F, Geng B, Liu P, Xu G. Proteomic analysis of murine testes lipid droplets. Sci Rep. 2015;5:12070.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chitraju C, Trotzmuller M, Hartler J, Wolinski H, Thallinger GG, Lass A, Zechner R, Zimmermann R, Kofeler HC, Spener F. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res. 2012;53:2141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arteriosc Thromb Vasc Biol. 2012;32:1094–8.

    Article  CAS  Google Scholar 

  60. Strauss 3rd JF, Seifter E, Lien EL, Goodman DB, Stambaugh RL. Lipid metabolism in regressing rat corpora lutea of pregnancy. J Lipid Res. 1977;18:246–58.

    CAS  PubMed  Google Scholar 

  61. Waterman RA. Lipid and arachidonic acid accumulation in naturally regressing porcine corpora lutea. Prostaglandins. 1980;20:57–71.

    Article  CAS  PubMed  Google Scholar 

  62. Waterman RA, Guthrie HD. Effects of Cloprostenol administration on neutral lipid and prostaglandin F metabolism by porcine luteal tissue. Prostaglandins. 1984;27:131–46.

    Article  CAS  PubMed  Google Scholar 

  63. Waterman RA. Changes in lipid contents and fatty acid compositions in ovine corpora lutea during the estrous cycle and early pregnancy. Biol Reprod. 1988;38:605–15.

    Article  CAS  PubMed  Google Scholar 

  64. Weinhouse S, Brewer JI. Cyclic variations in the lipids of the coprus luteum. J Biol Chem. 1942;143:617–23.

    CAS  Google Scholar 

  65. Davis JS, Rueda BR. The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci. 2002;7:d1949–78.

    Article  CAS  PubMed  Google Scholar 

  66. Alila HW, Dowd JP, Corradino RA, Harris WV, Hansel W. Control of progesterone production in small and large bovine luteal cells separated by flow cytometry. J Reprod Fertil. 1988;82:645–55.

    Article  CAS  PubMed  Google Scholar 

  67. Niswender GD, Davis TL, Griffith RJ, Bogan RL, Monser K, Bott RC, Bruemmer JE, Nett TM. Judge, jury and executioner: the auto-regulation of luteal function. Soc Reprod Fertil Suppl. 2007;64:191–206.

    CAS  PubMed  Google Scholar 

  68. Wiltbank MC, Salih SM, Atli MO, Luo W, Bormann CL, Ottobre JS, Vezina CM, Mehta V, Diaz FJ, Tsai SJ, Sartori R. Comparison of endocrine and cellular mechanisms regulating the corpus luteum of primates and ruminants. Anim Reprod. 2012;9:242–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem. 2006;281:11901–9.

    Article  CAS  PubMed  Google Scholar 

  70. Orlicky DJ, Monks J, Stefanski AL, McManaman JL. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PLoS One. 2013;8, e66837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bogan RL, Niswender GD. Constitutive steroidogenesis in ovine large luteal cells may be mediated by tonically active protein kinase A. Biol Reprod. 2007;77:209–16.

    Article  CAS  PubMed  Google Scholar 

  72. O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013;366:135–51.

    Google Scholar 

  73. Dunning K, Russell DL, Robker R. Lipids and oocyte developmental competence: the role of fatty acids and B-oxidation. Biochim Biophys Acta. 2014 Mar;1842(3):393-401. doi:10.1016/j.bbadis.2013.05.007.

  74. Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction. 2014;148:429–39.

    Google Scholar 

  75. Midzak AS, Chen H, Aon MA, Papadopoulos V, Zirkin BR. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol Reprod. 2011;84:976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brown KA, Samarajeewa NU, Simpson ER. Endocrine-related cancers and the role of AMPK. Mol Cell Endocrinol. 2013;366:170–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in twelve flavours. FEBS J. 2016.

    Google Scholar 

  78. Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci. 2015;9:235.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol. 2015;33:1–7.

    Article  CAS  PubMed  Google Scholar 

  80. Grahame HD. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6:1–19.

    Article  Google Scholar 

  81. Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26:190–201.

    Article  CAS  PubMed  Google Scholar 

  82. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, Foufelle F. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem. 2005;280:25250–7.

    Article  CAS  PubMed  Google Scholar 

  83. Kraemer FB, Khor VK, Shen WJ, Azhar S. Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol. 2013;371:15–9.

    Article  CAS  PubMed  Google Scholar 

  84. Dupont J, Chabrolle C, Rame C, Tosca L, Coyral-Castel S. Role of the peroxisome proliferator-activated receptors, adenosine monophosphate-activated kinase, and adiponectin in the ovary. PPAR Res. 2008;2008:176275.

    Article  PubMed  CAS  Google Scholar 

  85. Tosca L, Chabrolle C, Uzbekova S, Dupont J. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5'-monophosphate-activated protein kinase (AMPK). Biol Reprod. 2007;76:368–78.

    Article  CAS  PubMed  Google Scholar 

  86. Tosca L, Chabrolle C, Crochet S, Tesseraud S, Dupont J. IGF-1 receptor signaling pathways and effects of AMPK activation on IGF-1-induced progesterone secretion in hen granulosa cells. Domest Anim Endocrinol. 2008;34:204–16.

    Article  CAS  PubMed  Google Scholar 

  87. Tosca L, Froment P, Solnais P, Ferre P, Foufelle F, Dupont J. Adenosine 5ʹ-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology. 2005;146:4500–13.

    Article  CAS  PubMed  Google Scholar 

  88. Tosca L, Rame C, Chabrolle C, Tesseraud S, Dupont J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction. 2010;139:409–18.

    Google Scholar 

  89. Will MA, Palaniappan M, Peegel H, Kayampilly P, Menon KM. Metformin: direct inhibition of rat ovarian theca-interstitial cell proliferation. Fertil Steril. 2012;98:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palaniappan M, Menon B, Menon KM. Stimulatory effect of insulin on theca-interstitial cell proliferation and cell cycle regulatory proteins through MTORC1 dependent pathway. Mol Cell Endocrinol. 2013;366:81–9.

    Article  CAS  PubMed  Google Scholar 

  91. Bowdridge EC, Goravanahally MP, Inskeep EK, Flores JA. Activation of adenosine monophosphate-activated protein kinase is an additional mechanism that participates in mediating inhibitory actions of prostaglandin F2Alpha in mature, but not developing, bovine corpora lutea. Biol Reprod. 2015;93:7.

    Article  PubMed  CAS  Google Scholar 

  92. Wright MF, Bowdridge E, McDermott EL, Richardson S, Scheidler J, Syed Q, Bush T, Inskeep EK, Flores JA. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea. Biol Reprod. 2014;90:55.

    Article  PubMed  CAS  Google Scholar 

  93. Goravanahally MP, Salem M, Yao J, Inskeep EK, Flores JA. Differential gene expression in the bovine corpus luteum during transition from early phase to midphase and its potential role in acquisition of luteolytic sensitivity to prostaglandin F2 alpha. Biol Reprod. 2009;80:980–8.

    Article  CAS  PubMed  Google Scholar 

  94. Hou X, Arvisais EW, Davis JS. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase. Endocrinology. 2010;151:2846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J. 2014;459:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem. 2006;281:36662–72.

    Article  CAS  PubMed  Google Scholar 

  97. Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, Wallimann T, Carling D, Hue L, Rider MH. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem. 2006;281:5335–40.

    Article  CAS  PubMed  Google Scholar 

  98. Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Makela TP, Wallimann T, Neumann D, Krek W. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 2010;29:469–81.

    Article  CAS  PubMed  Google Scholar 

  99. Alila HW, Davis JS, Dowd JP, Corradino RA, Hansel W. Differential effects of calcium on progesterone production in small and large bovine luteal cells. J Steroid Biochem. 1990;36:687–93.

    Article  CAS  PubMed  Google Scholar 

  100. Davis JS, Alila HW, West LA, Corradino RA, Weakland LL, Hansel W. Second messenger systems and progesterone secretion in the small cells of the bovine corpus luteum: effects of gonadotropins and prostaglandin F2a. J Steroid Biochem. 1989;32:643–9.

    Article  CAS  PubMed  Google Scholar 

  101. Davis JS, Weakland LL, Farese RV, West LA. Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells. J Biol Chem. 1987;262:8515–21.

    CAS  PubMed  Google Scholar 

  102. Roy L, McDonald CA, Jiang C, Maroni D, Zeleznik AJ, Wyatt TA, Hou X, Davis JS. Convergence of 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A and glycogen synthase kinase-3beta/beta-catenin signaling in corpus luteum progesterone synthesis. Endocrinology. 2009;150:5036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.

    Article  CAS  PubMed  Google Scholar 

  104. Mao D, Hou X, Talbott H, Cushman R, Cupp A, Davis JS. ATF3 expression in the corpus luteum: possible role in luteal regression. Mol Endocrinol. 2013;27:2066–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen D, Fong HW, Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology. 2001;142:887–95.

    CAS  PubMed  Google Scholar 

  106. Hou X, Arvisais EW, Jiang C, Chen DB, Roy SK, Pate JL, Hansen TR, Rueda BR, Davis JS. Prostaglandin F2alpha stimulates the expression and secretion of transforming growth factor B1 via induction of the early growth response 1 gene (EGR1) in the bovine corpus luteum. Mol Endocrinol. 2008;22:403–14.

    Article  CAS  PubMed  Google Scholar 

  107. Guo N, Meng C, Bai W, Wei Q, Shi F, Davis JS, Mao D. Prostaglandin F2alpha induces expression of activating transcription factor 3 (ATF3) and activates MAPK signaling in the rat corpus luteum. Acta Histochem. 2015;117:211–8.

    Article  CAS  PubMed  Google Scholar 

  108. Atli MO, Bender RW, Mehta V, Bastos MR, Luo W, Vezina CM, Wiltbank MC. Patterns of gene expression in the bovine corpus luteum following repeated intrauterine infusions of low doses of prostaglandin F2alpha. Biol Reprod. 2012;86:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sen A, Browning J, Inskeep EK, Lewis P, Flores JA. Expression and activation of protein kinase C isozymes by prostaglandin F(2alpha) in the early- and mid-luteal phase bovine corpus luteum. Biol Reprod. 2004;70:379–84.

    Article  CAS  PubMed  Google Scholar 

  110. Arvisais EW, Romanelli A, Hou X, Davis JS. AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha. J Biol Chem. 2006;281:26904–13.

    Article  CAS  PubMed  Google Scholar 

  111. Yoon MS. Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy. Cell Commun Signal. 2015;13:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mizushima N, Komatsu M7. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  113. Dall'Armi C, Devereaux KA, Di Paolo G. The role of lipids in the control of autophagy. Curr Biol. 2013;23:R33–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB, 3rd. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction. 2011;141:759–65.

    Google Scholar 

  115. Song ZH, Yu HY, Wang P, Mao GK, Liu WX, Li MN, Wang HN, Shang YL, Liu C, Xu ZL, Sun QY, Li W. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015;6, e1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Choi J, Jo M, Lee E, Choi D. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia. Reproduction. 2014;147:73–80.

    Google Scholar 

  117. Morais RD, Thome RG, Lemos FS, Bazzoli N, Rizzo E. Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res. 2012;347:467–78.

    Article  CAS  PubMed  Google Scholar 

  118. Quatacker JR. Formation of autophagic vacuoles during human corpus luteum involution. Z Zellforsch Mikrosk Anat 1971;122:479–487.

    Google Scholar 

  119. Paavola LG. The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. J Cell Biol. 1978;79:59–73.

    Article  CAS  PubMed  Google Scholar 

  120. Stacy BD, Gemmell RT, Thorburn GD. Morphology of the corpus luteum in the sheep during regression induced by prostaglandin F2ALPHA. Biol Reprod. 1976;14:280–91.

    Article  CAS  PubMed  Google Scholar 

  121. McClellan MC, Abel Jr JH, Niswender GD. Function of lysosomes during luteal regression in normally cycling and PGF alpha-treated ewes. Biol Reprod. 1977;16:499–512.

    CAS  PubMed  Google Scholar 

  122. Gawriluk TR, Ko C, Hong X, Christenson LK, Rucker 3rd EB. Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci USA. 2014;111:E4194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aboelenain M, Kawahara M, Balboula AZ, Montasser Ael M, Zaabel SM, Okuda K, Takahashi M. Status of autophagy, lysosome activity and apoptosis during corpus luteum regression in cattle. J Reprod Dev. 2015;61:229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gaytan M, Morales C, Sanchez-Criado JE, Gaytan F. Immunolocalization of beclin 1, a bcl-2-binding, autophagy-related protein, in the human ovary: possible relation to life span of corpus luteum. Cell Tissue Res. 2008;331:509–17.

    Article  CAS  PubMed  Google Scholar 

  125. Choi J, Jo M, Lee E, Choi D. The role of autophagy in corpus luteum regression in the rat. Biol Reprod. 2011;85:465–72.

    Article  CAS  PubMed  Google Scholar 

  126. Choi J, Jo M, Lee E, Choi D. ERK1/2 is involved in luteal cell autophagy regulation during corpus luteum regression via an mTOR-independent pathway. Mol Hum Reprod. 2014;20:972–80.

    Article  PubMed  Google Scholar 

  127. Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by beclin 1 in the heart. Mol Cell Cardiol. 2016 Jun;95:19-25. doi:10.1016/j.yjmcc.2015.10.032.

  128. Lin H, Li HF, Chen HH, Lai PF, Juan SH, Chen JJ, Cheng CF. Activating transcription factor 3 protects against pressure-overload heart failure via the autophagy molecule Beclin-1 pathway. Mol Pharmacol. 2014;85:682–91.

    Article  PubMed  CAS  Google Scholar 

  129. Yuan J, Zhang Y, Sheng Y, Fu X, Cheng H, Zhou R. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 2015;11:1081–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martinez-Lopez N, Singh R. Autophagy and lipid droplets in the liver. Annu Rev Nutr. 2015;35:215–37.

    Article  CAS  PubMed  Google Scholar 

  131. Shibata M, Yoshimura K, Tamura H, Ueno T, Nishimura T, Inoue T, Sasaki M, Koike M, Arai H, Kominami E, Uchiyama Y. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem Biophys Res Commun. 2010;393:274–9.

    Article  CAS  PubMed  Google Scholar 

  132. Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 2015;34:2117–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012;23:896–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-67015-20076 from the USDA National Institute of Food and Agriculture (NIFA) to J.S.D. and a NIFA Pre-doctoral award 2014-67011-22280 to H.T. The work was also supported in part by the Department of Veterans Affairs, Office of Research and Development Biomedical Laboratory Research and Development funds; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center, Omaha, NE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Talbott, H., Davis, J.S. (2017). Lipid Droplets and Metabolic Pathways Regulate Steroidogenesis in the Corpus Luteum. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics