Skip to main content

Development of Gut Motility

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

Coordinated movements of the gastrointestinal tract are regulated by multiple control systems including intrinsic and extrinsic neurons, interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α (PDGFRα)-expressing cells, and myogenic mechanisms. Studies using laboratory animals have shown that although enteric neurons develop early, the first gastrointestinal motility patterns are myogenic and not neurally mediated. However, neurally mediated contractile activity is prominent by birth and is essential for propulsive activity as shown by the bowel obstruction that occurs proximal to the aganglionic region in infants with Hirschsprung disease and in animal models of Hirschsprung disease. The development of ICC requires signaling via the tyrosine kinase receptor, Kit. Genetic alterations of Kit, and reduced ICC density, have recently been linked to a severe case of idiopathic constipation and megacolon in a child. Studies in preterm and term humans have shown that esophageal peristalsis and sphincter function mature during the late fetal and early postnatal stages. Little is known about the development of motility in the small and large bowel of human infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20 Suppl 1:39–53.

    Article  CAS  PubMed  Google Scholar 

  2. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296(1):G1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hasler WL. Motility of the small intestine and colon. In: Yamada T, editor. Textbook of gastroenterology. Wiley-Blackwell: Philadelphia; 2009. p. 231–63.

    Google Scholar 

  5. Roberts RR, Ellis M, Gwynne RM, Bergner AJ, Lewis MD, Beckett EA, Bornstein JC, Young HM. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol. 2010;588(Pt 7):1153–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huizinga JD, Chen JH. The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Front Neurosci. 2014;8:78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC. Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol. 2004;556(Pt 2):557–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huizinga JD, Chen JH, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:3326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McKeown SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: a developmental disorder of the enteric nervous system. WIRES Dev Biol. 2013;2:113–29.

    Article  CAS  Google Scholar 

  10. Lentle RG, Janssen PW, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008;178(3):257–68.

    Article  PubMed  Google Scholar 

  11. Wood JD. Enteric nervous system: sensory physiology, diarrhea and constipation. Curr Opin Gastroenterol. 2010;26(2):102–8.

    Article  PubMed  Google Scholar 

  12. Bornstein JC, Gwynne RM, Sjovall H. Enteric neural regulation of mucosal secretion. In: Johnson LR, editor. Physiology of the gastrointestinal tract. Elsevier: Amsterdam; 2012. p. 769–90.

    Chapter  Google Scholar 

  13. Holmberg A, Schwerte T, Fritsche R, Pelster B, Holmgren S. Ontogeny of intestinal motility in correlation to neuronal development in zebrafish embryos and larvae. J Fish Biol. 2003;63:318–31.

    Article  Google Scholar 

  14. Holmberg A, Schwerte T, Pelster B, Holmgren S. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2004;207(Pt 23):4085–94.

    Article  PubMed  Google Scholar 

  15. Holmberg A, Olsson C, Holmgren S. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2006;209(Pt 13):2472–9.

    Article  CAS  PubMed  Google Scholar 

  16. Holmberg A, Olsson C, Hennig GW. TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J Exp Biol. 2007;210(Pt 6):1084–91.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhlman J, Eisen JS. Genetic screen for mutations affecting development and function of the enteric nervous system. Dev Dyn. 2007;236(1):118–27.

    Article  PubMed  Google Scholar 

  18. Field HA, Kelley KA, Martell L, Goldstein AM, Serluca FC. Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol Motil. 2009;21(3):304–12.

    Article  CAS  PubMed  Google Scholar 

  19. Bonora E, Bianco F, Cordeddu L, Bamshad M, Francescatto L, Dowless D, Stanghellini V, Cogliandro RF, Lindberg G, Mungan Z, Cefle K, Ozcelik T, Palanduz S, Ozturk S, Gedikbasi A, Gori A, Pippucci T, Graziano C, Volta U, Caio G, Barbara G, D’Amato M, Seri M, Katsanis N, Romeo G, De Giorgio R. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology. 2015;148(4):771–82. e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasch S, Sangild PT, Gregersen H, Schmidt M, Omari T, Lau C. The preterm piglet—a model in the study of oesophageal development in preterm neonates. Acta Paediatr. 2010;99(2):201–8.

    CAS  PubMed  Google Scholar 

  21. McLain Jr CR. Amniography studies of the gastrointestinal motility of the human fetus. Am J Obstet Gynecol. 1963;86:1079–87.

    PubMed  Google Scholar 

  22. Sase M, Lee JJ, Park JY, Thakur A, Ross MG, Buchmiller-Crair TL. Ontogeny of fetal rabbit upper gastrointestinal motility. J Surg Res. 2001;101(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  23. Sase M, Lee JJ, Ross MG, Buchmiller-Crair TL. Effect of hypoxia on fetal rabbit gastrointestinal motility. J Surg Res. 2001;99(2):347–51.

    Article  CAS  PubMed  Google Scholar 

  24. Anderson RB, Enomoto H, Bornstein JC, Young HM. The enteric nervous system is not essential for the propulsion of gut contents in fetal mice. Gut. 2004;53(10):1546–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954;101:515–41.

    Article  CAS  PubMed  Google Scholar 

  26. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30(1):31–48.

    PubMed  Google Scholar 

  27. Burns AJ, Le Douarin NM. The sacral neural crest contributes neurons and glia to the post- umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125(21):4335–47.

    CAS  PubMed  Google Scholar 

  28. Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol. 2000;227(1):146–55.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Chan AK, Sham MH, Burns AJ, Chan WY. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology. 2011;141(3):992–1002.e1–6.

    Article  PubMed  Google Scholar 

  30. Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, Whitington PM. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol. 2004;270(2):455–73.

    Article  CAS  PubMed  Google Scholar 

  31. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013;10:43–57.

    Article  CAS  PubMed  Google Scholar 

  32. Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 2014;12:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Baetge G, Pintar JE, Gershon MD. Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol. 1990;141(2):353–80.

    Article  CAS  PubMed  Google Scholar 

  34. Baetge G, Schneider KA, Gershon MD. Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel. Development. 1990;110(3):689–701.

    CAS  PubMed  Google Scholar 

  35. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81(1–3):87–96.

    Article  CAS  PubMed  Google Scholar 

  36. Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol. 2008;509(5):474–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pham TD, Gershon MD, Rothman TP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol. 1991;314(4):789–98.

    Article  CAS  PubMed  Google Scholar 

  38. Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers Jr MG, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol. 2014;522(3):514–27.

    Article  CAS  PubMed  Google Scholar 

  39. Hao MM, Moore RE, Roberts RR, Nguyen T, Furness JB, Anderson RB, Young HM. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil. 2010;22(5):e127–37.

    CAS  PubMed  Google Scholar 

  40. Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13(7):1193–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Young HM, Ciampoli D. Transient expression of neuronal nitric oxide synthase by neurons of the submucous plexus of the mouse small intestine. Cell Tissue Res. 1998;291(3):395–401.

    Article  CAS  PubMed  Google Scholar 

  42. Obermayr F, Stamp LA, Anderson CR, Young HM. Genetic fate-mapping of tyrosine hydroxylase-expressing cells in the enteric nervous system. Neurogastroenterol Motil. 2013;25:e283–91.

    Article  CAS  PubMed  Google Scholar 

  43. Brookes SJ. Neuronal nitric oxide in the gut. J Gastroenterol Hepatol. 1993;8(6):590–603.

    Article  CAS  PubMed  Google Scholar 

  44. Brookes SJ. Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec. 2001;262(1):58–70.

    Article  CAS  PubMed  Google Scholar 

  45. Branchek TA, Gershon MD. Time course of expression of neuropeptide Y, calcitonin gene-related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytryptamine in mucosal enterochromaffin cells. J Comp Neurol. 1989;285(2):262–73.

    Article  CAS  PubMed  Google Scholar 

  46. Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518(21):4419–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel BA, Dai X, Burda JE, Zhao H, Swain GM, Galligan JJ, Bian X. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil. 2010;22(8):909–18. e236–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vries P, Soret R, Suply E, Heloury Y, Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G539–47.

    Article  PubMed  CAS  Google Scholar 

  49. Rothman TP, Gershon MD. Phenotypic expression in the developing murine enteric nervous system. J Neurosci. 1982;2(3):381–93.

    CAS  PubMed  Google Scholar 

  50. Hao MM, Bornstein JC, Young HM. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice. J Comp Neurol. 2013;521(14):3358–70.

    Article  CAS  PubMed  Google Scholar 

  51. Erickson CS, Lee SJ, Barlow-Anacker AJ, Druckenbrod NR, Epstein ML, Gosain A. Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines. Neurogastroenterol Motil. 2014;26(6):874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Foong JP, Hirst CS, Hao MM, McKeown SJ, Boesmans W, Young HM, Bornstein JC, Vanden Berghe P. Changes in nicotinic neurotransmission during enteric nervous system development. J Neurosci. 2015;35(18):7106–15.

    Article  CAS  PubMed  Google Scholar 

  53. Vannucchi MG, Faussone-Pellegrini MS. Differentiation of cholinergic cells in the rat gut during pre- and postnatal life. Neurosci Lett. 1996;206(2–3):105–8.

    Article  CAS  PubMed  Google Scholar 

  54. Matini P, Mayer B, Faussone-Pellegrini MS. Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res. 1997;288(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  55. Abalo R, Vera G, Rivera AJ, Moro-Rodriguez E, Martin-Fontelles MI. Postnatal maturation of the gastrointestinal tract: a functional and immunohistochemical study in the guinea-pig ileum at weaning. Neurosci Lett. 2009;467(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  56. Daniel EE, Wang YF. Control systems of gastrointestinal motility are immature at birth in dogs. Neurogastroenterol Motil. 1999;11(5):375–92.

    Article  CAS  PubMed  Google Scholar 

  57. Roberts RR, Murphy JF, Young HM, Bornstein JC. Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G930–8.

    Article  CAS  PubMed  Google Scholar 

  58. Hirst CS, Foong JPP, Stamp LA, Fegan E, Dent S, Cooper EC, Lomax AE, Anderson CA, Bornstein JC, Young HM, McKeown SJ. Ion channel expression in the developing enteric nervous system. PLoS One. 2015;10(3), e0123436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol. 2013;382(1):365–74.

    Article  CAS  PubMed  Google Scholar 

  60. Hao MM, Lomax AE, McKeown SJ, Reid CA, Young HM, Bornstein JC. Early development of electrical excitability in the mouse enteric nervous system. J Neurosci. 2012;32(32):10949–60.

    Article  CAS  PubMed  Google Scholar 

  61. Bornstein JC, Costa M, Grider JR. Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil. 2004;16 Suppl 1:34–8.

    Article  PubMed  Google Scholar 

  62. Vannucchi MG, Faussone-Pellegrini MS. Synapse formation during neuron differentiation: an in situ study of the myenteric plexus during murine embryonic life. J Comp Neurol. 2000;425(3):369–81.

    Article  CAS  PubMed  Google Scholar 

  63. Foong JP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol. 2012;590(Pt 10):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sasselli V, Boesmans W, Vanden Berghe P, Tissir F, Goffinet AM, Pachnis V. Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest. 2013;123(4):1763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol (Lond). 1997;505(Pt 1):241–58.

    Article  CAS  Google Scholar 

  66. Zagorodnyuk VP, Hoyle CH, Burnstock G. An electrophysiological study of developmental changes in the innervation of the guinea-pig taenia coli. Pflugers Arch. 1993;423(5–6):427–33.

    Article  CAS  PubMed  Google Scholar 

  67. Sundqvist M, Holmgren S. Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1138–44.

    Article  CAS  PubMed  Google Scholar 

  68. Wittmeyer V, Merrot T, Mazet B. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults. Neurogastroenterol Motil. 2010;22(10):1078–e282.

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Caron MG, Blakely RD, Margolis KG, Gershon MD. Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J Neurosci. 2010;30(49):16730–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Cote F, Mallet J, Gershon MD. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011;31(24):8998–9009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Faussone-Pellegrini MS, Cortesini C. The muscle coat of the lower esophageal sphincter in patients with achalasia and hypertensive sphincter. An electron microscopic study. J Submicrosc Cytol. 1985;17(4):673–85.

    CAS  PubMed  Google Scholar 

  72. Gockel I, Bohl JR, Eckardt VF, Junginger T. Reduction of interstitial cells of Cajal (ICC) associated with neuronal nitric oxide synthase (n-NOS) in patients with achalasia. Am J Gastroenterol. 2008;103(4):856–64.

    Article  PubMed  Google Scholar 

  73. Ordog T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49(10):1731–9.

    Article  CAS  PubMed  Google Scholar 

  74. Long QL, Fang DC, Shi HT, Luo YH. Gastro-electric dysrhythm and lack of gastric interstitial cells of Cajal. World J Gastroenterol. 2004;10(8):1227–30.

    PubMed  PubMed Central  Google Scholar 

  75. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg. 2005;9(1):102–8.

    Article  PubMed  Google Scholar 

  76. Horvath VJ, Vittal H, Lorincz A, Chen H, Almeida-Porada G, Redelman D, Ordog T. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of Cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759–70.

    Article  CAS  PubMed  Google Scholar 

  77. Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg. 1995;30(11):1535–43.

    Article  CAS  PubMed  Google Scholar 

  78. Feldstein AE, Miller SM, El-Youssef M, Rodeberg D, Lindor NM, Burgart LJ, Szurszewski JH, Farrugia G. Chronic intestinal pseudoobstruction associated with altered interstitial cells of Cajal networks. J Pediatr Gastroenterol Nutr. 2003;36(4):492–7.

    Article  PubMed  Google Scholar 

  79. He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased interstitial cell of Cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;118(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  80. Tong WD, Liu BH, Zhang LY, Xiong RP, Liu P, Zhang SB. Expression of c-kit messenger ribonucleic acid and c-kit protein in sigmoid colon of patients with slow transit constipation. Int J Colorectal Dis. 2005;20(4):363–7.

    Article  PubMed  Google Scholar 

  81. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373(6512):347–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol. 1995;269(6 Pt 1):C1577–85.

    CAS  PubMed  Google Scholar 

  84. Hirst GD, Edwards FR. Generation of slow waves in the antral region of guinea-pig stomach—a stochastic process. J Physiol. 2001;535(Pt 1):165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93(21):12008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20(4):1393–403.

    CAS  PubMed  Google Scholar 

  87. Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM. Platelet-derived growth factor receptor-alpha-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol. 2014;307(6):C561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development. 1996;122(3):725–33.

    CAS  PubMed  Google Scholar 

  89. Young HM, Ciampoli D, Southwell BR, Newgreen DF. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol. 1996;180(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  90. Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999;117(3):584–94.

    Article  CAS  PubMed  Google Scholar 

  91. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384–401.

    Article  CAS  PubMed  Google Scholar 

  92. Huizinga JD, Berezin I, Sircar K, Hewlett B, Donnelly G, Bercik P, Ross C, Algoufi T, Fitzgerald P, Der T, Riddell RH, Collins SM, Jacobson K. Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system. Gastroenterology. 2001;120(2):561–7.

    Article  CAS  PubMed  Google Scholar 

  93. Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn. 1998;211(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  94. Torihashi S, Ward SM, Sanders KM. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology. 1997;112(1):144–55.

    Article  CAS  PubMed  Google Scholar 

  95. Carmona R, Cano E, Mattiotti A, Gaztambide J, Munoz-Chapuli R. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS One. 2013;8(2), e55890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  97. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.

    CAS  PubMed  Google Scholar 

  98. Young HM, Torihashi S, Ciampoli D, Sanders KM. Identification of neurons that express stem cell factor in the mouse small intestine. Gastroenterology. 1998;115(4):898–908.

    Article  CAS  PubMed  Google Scholar 

  99. Spencer NJ, Sanders KM, Smith TK. Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J Physiol. 2003;553(Pt 3):881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hennig GW, Spencer NJ, Jokela-Willis S, Bayguinov PO, Lee HT, Ritchie LA, Ward SM, Smith TK, Sanders KM. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil. 2010;22(5):e138–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280(1):97–111.

    CAS  PubMed  Google Scholar 

  102. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602–11.

    CAS  PubMed  Google Scholar 

  103. Suzuki H, Ward SM, Bayguinov YR, Edwards FR, Hirst GD. Involvement of intramuscular interstitial cells in nitrergic inhibition in the mouse gastric antrum. J Physiol. 2003;546(Pt 3):751–63.

    Article  CAS  PubMed  Google Scholar 

  104. Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Relationship between enteric neurons and interstitial cells in the primate gastrointestinal tract. Neurogastroenterol Motil. 2012;24(9):e437–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beckett EA, Horiguchi K, Khoyi M, Sanders KM, Ward SM. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol. 2002;543(Pt 3):871–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL. C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol (Berl). 2001;204(1):11–26.

    Article  CAS  Google Scholar 

  107. Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat Embryol (Berl). 2002;205(4):325–42.

    Article  Google Scholar 

  108. Faussone-Pellegrini MS. Cytodifferentiation of the interstitial cells of Cajal related to the myenteric plexus of mouse intestinal muscle coat. An E.M. study from foetal to adult life. Anat Embryol (Berl). 1985;171(2):163–9.

    Article  CAS  Google Scholar 

  109. Faussone-Pellegrini MS, Matini P, Stach W. Differentiation of enteric plexuses and interstitial cells of Cajal in the rat gut during pre- and postnatal life. Acta Anat (Basel). 1996;155(2):113–25.

    Article  CAS  Google Scholar 

  110. Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol. 2006;573(Pt 1):147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kondo J, Powell AE, Wang Y, Musser MA, Southard-Smith EM, Franklin JL, Coffey RJ. LRIG1 regulates ontogeny of smooth muscle-derived subsets of interstitial cells of Cajal in mice. Gastroenterology. 2015;149(2):407–19. e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62(4):295–316.

    Article  CAS  PubMed  Google Scholar 

  113. Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 2000;80(3):142–7.

    Article  CAS  PubMed  Google Scholar 

  114. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res. 2000;302(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  115. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest. 1999;79(1):59–65.

    CAS  PubMed  Google Scholar 

  116. Iino S, Horiguchi K, Horiguchi S, Nojyo Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol. 2009;131(6):691–702.

    Article  CAS  PubMed  Google Scholar 

  117. Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res. 2011;344(1):17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRalpha in the human gastrointestinal tract. J Cell Mol Med. 2013;17(9):1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peri LE, Sanders KM, Mutafova-Yambolieva VN. Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRalpha-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil. 2013;25(9):e609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM. Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol. 2013;591(Pt 24):6193–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol. 2003;27(2):228–35.

    Article  CAS  PubMed  Google Scholar 

  122. Roberts RR, Bornstein JC, Bergner AJ, Young HM. Disturbances of colonic motility in mouse models of Hirschsprung’s disease. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G996–1008.

    Article  CAS  PubMed  Google Scholar 

  123. Hennig GW, Gregory S, Brookes SJ, Costa M. Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Motil. 2010;22(6):e207–17.

    Article  CAS  PubMed  Google Scholar 

  124. Lang RJ, Takano H, Davidson ME, Suzuki H, Klemm MF. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract. J Urol. 2001;166(1):329–34.

    Article  CAS  PubMed  Google Scholar 

  125. Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol. 2014;592(Pt 14):2959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suply E, de Vries P, Soret R, Cossais F, Neunlist M. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol. 2012;302(12):G1373–80.

    Article  CAS  PubMed  Google Scholar 

  127. Lesniewska V, Laerke HN, Hedemann MS, Hojsgaard S, Pierzynowski SG, Jensen BB. The effect of change of the diet and feeding regimen at weaning on duodenal myoelectrical activity in piglets. Animal Sci. 2000;71:443–51.

    Article  Google Scholar 

  128. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–82.

    Article  CAS  PubMed  Google Scholar 

  129. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  132. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143(4):1006–16. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. di Giancamillo A, Vitari F, Bosi G, Savoini G, Domeneghini C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol Motil. 2010;22(9):e271–8.

    Article  PubMed  Google Scholar 

  134. Fu M, Tam PK, Sham MH, Lui VC. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat Embryol. 2004;208(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  135. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319(3):367–82.

    Article  PubMed  Google Scholar 

  136. Radenkovic G, Ilic I, Zivanovic D, Vlajkovic S, Petrovic V, Mitrovic O. C-kit-immunopositive interstitial cells of Cajal in human embryonal and fetal oesophagus. Cell Tissue Res. 2010;340(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  137. Ross MG, Nijland MJ. Development of ingestive behavior. Am J Physiol. 1998;274(4 Pt 2):R879–93.

    CAS  PubMed  Google Scholar 

  138. Shi L, Mao C, Zeng F, Zhu L, Xu Z. Central cholinergic mechanisms mediate swallowing, renal excretion, and c-fos expression in the ovine fetus near term. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R318–25.

    Article  CAS  PubMed  Google Scholar 

  139. Omari TI, Miki K, Fraser R, Davidson G, Haslam R, Goldsworthy W, Bakewell M, Kawahara H, Dent J. Esophageal body and lower esophageal sphincter function in healthy premature infants. Gastroenterology. 1995;109(6):1757–64.

    Article  CAS  PubMed  Google Scholar 

  140. Jadcherla SR, Duong HQ, Hofmann C, Hoffmann R, Shaker R. Characteristics of upper oesophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterol Motil. 2005;17(5):663–70.

    Article  CAS  PubMed  Google Scholar 

  141. Staiano A, Boccia G, Salvia G, Zappulli D, Clouse RE. Development of esophageal peristalsis in preterm and term neonates. Gastroenterology. 2007;132(5):1718–25.

    Article  PubMed  Google Scholar 

  142. Omari TI, Miki K, Davidson G, Fraser R, Haslam R, Goldsworthy W, Bakewell M, Dent J. Characterisation of relaxation of the lower oesophageal sphincter in healthy premature infants. Gut. 1997;40(3):370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jadcherla SR. Manometric evaluation of esophageal-protective reflexes in infants and children. Am J Med. 2003;115(Suppl 3A):157S–60.

    Article  PubMed  Google Scholar 

  144. Jadcherla SR. Upstream effect of esophageal distention: effect on airway. Curr Gastroenterol Rep. 2006;8(3):190–4.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gupta A, Gulati P, Kim W, Fernandez S, Shaker R, Jadcherla SR. Effect of postnatal maturation on the mechanisms of esophageal propulsion in preterm human neonates: primary and secondary peristalsis. Am J Gastroenterol. 2009;104(2):411–9.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Jadcherla SR, Duong HQ, Hoffmann RG, Shaker R. Esophageal body and upper esophageal sphincter motor responses to esophageal provocation during maturation in preterm newborns. J Pediatr. 2003;143(1):31–8.

    Article  PubMed  Google Scholar 

  147. McNamara F, Lijowska AS, Thach BT. Spontaneous arousal activity in infants during NREM and REM sleep. J Physiol. 2002;538(Pt 1):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jadcherla SR, Parks VN, Peng J, Dzodzomenyo S, Fernandez S, Shaker R, Splaingard M. Esophageal sensation in premature human neonates: temporal relationships and implications of aerodigestive reflexes and electrocortical arousals. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G134–44.

    Article  CAS  PubMed  Google Scholar 

  149. Jadcherla SR, Chan CY, Fernandez S, Splaingard M. Maturation of upstream and downstream esophageal reflexes in human premature neonates: the role of sleep and awake states. Am J Physiol Gastrointest Liver Physiol. 2013;305(9):G649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hasenstab KA, Jadcherla SR. Respiratory events in infants presenting with apparent life threatening events: is there an explanation from esophageal motility? J Pediatr. 2014;165(2):250–5. e1.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jadcherla SR, Hoffmann RG, Shaker R. Effect of maturation of the magnitude of mechanosensitive and chemosensitive reflexes in the premature human esophagus. J Pediatr. 2006;149(1):77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Qureshi A, Malkar M, Splaingard M, Khuhro A, Jadcherla S. The role of sleep in the modulation of gastroesophageal reflux and symptoms in NICU neonates. Pediatr Neurol. 2015;53(3):226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jadcherla SR, Shubert TR, Gulati IK, Jensen PS, Wei L, Shaker R. Upper and lower esophageal sphincter kinetics are modified during maturation: effect of pharyngeal stimulus in premature infants. Pediatr Res. 2015;77(1–1):99–106.

    Article  PubMed  Google Scholar 

  154. Jadcherla SR, Shubert TR, Malkar MB, Sitaram S, Moore RK, Wei L, Fernandez S, Castile RG. Gestational and postnatal modulation of esophageal sphincter reflexes in human premature neonates. Pediatr Res. 2015;78(5):540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hill CD, Jadcherla SR. Esophageal mechanosensitive mechanisms are impaired in neonates with hypoxic-ischemic encephalopathy. J Pediatr. 2013;162(5):976–82.

    Article  PubMed  Google Scholar 

  156. Gulati IK, Shubert TR, Sitaram S, Wei L, Jadcherla SR. Effects of birth asphyxia on the modulation of pharyngeal provocation-induced adaptive reflexes. Am J Physiol Gastrointest Liver Physiol. 2015;309(8):G662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sase M, Miwa I, Sumie M, Nakata M, Sugino N, Ross MG. Ontogeny of gastric emptying patterns in the human fetus. J Matern Fetal Neonatal Med. 2005;17(3):213–7.

    Article  PubMed  Google Scholar 

  158. Sase M, Miwa I, Sumie M, Nakata M, Sugino N, Okada K, Osa A, Miike H, Ross MG. Gastric emptying cycles in the human fetus. Am J Obstet Gynecol. 2005;193(3 Pt 2):1000–4.

    Article  PubMed  Google Scholar 

  159. Berseth CL. Motor function in the stomach and small intestine in the neonate. NeoReviews. 2006;7:e28–33.

    Article  Google Scholar 

  160. Jadcherla SR, Slaughter JL, Stenger MR, Klebanoff M, Kelleher K, Gardner W. Practice variance, prevalence, and economic burden of premature infants diagnosed with GERD. Hosp Pediatr. 2013;3(4):335–41.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jadcherla SR, Gupta A, Fernandez S, Nelin LD, Castile R, Gest AL, Welty S. Spatiotemporal characteristics of acid refluxate and relationship to symptoms in premature and term infants with chronic lung disease. Am J Gastroenterol. 2008;103(3):720–8.

    Article  PubMed  Google Scholar 

  162. Jadcherla SR, Peng J, Chan CY, Moore R, Wei L, Fernandez S, DI Lorenzo C. Significance of gastroesophageal refluxate in relation to physical, chemical, and spatiotemporal characteristics in symptomatic intensive care unit neonates. Pediatr Res. 2011;70(2):192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jadcherla SR, Chan CY, Moore R, Malkar M, Timan CJ, Valentine CJ. Impact of feeding strategies on the frequency and clearance of acid and nonacid gastroesophageal reflux events in dysphagic neonates. JPEN J Parenter Enteral Nutr. 2012;36(4):449–55.

    Article  CAS  PubMed  Google Scholar 

  164. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115(4):646–51.

    Article  CAS  PubMed  Google Scholar 

  165. Bisset WM, Watt JB, Rivers RP, Milla PJ. Ontogeny of fasting small intestinal motor activity in the human infant. Gut. 1988;29(4):483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jadcherla SR, Klee G, Berseth CL. Regulation of migrating motor complexes by motilin and pancreatic polypeptide in human infants. Pediatr Res. 1997;42(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  167. Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M, Muls E, Bouillon R. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med. 1990;322(15):1028–31.

    Article  CAS  PubMed  Google Scholar 

  168. Jadcherla SR, Berseth CL. Effect of erythromycin on gastroduodenal contractile activity in developing neonates. J Pediatr Gastroenterol Nutr. 2002;34(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  169. Peeters TL, Vantrappen G, Janssens J. Fasting plasma motilin levels are related to the interdigestive motility complex. Gastroenterology. 1980;79(4):716–9.

    CAS  PubMed  Google Scholar 

  170. Janssens J, Vantrappen G, Peeters TL. The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regul Pept. 1983;6(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  171. Peeters TL, Depoortere I, Macielag MJ, Dharanipragada R, Marvin MS, Florance JR, Galdes A. The motilin antagonist ANQ-11125 blocks motilide-induced contractions in vitro in the rabbit. Biochem Biophys Res Commun. 1994;198(2):411–6.

    Article  CAS  PubMed  Google Scholar 

  172. Baker J, Berseth CL. Postnatal change in inhibitory regulation of intestinal motor activity in human and canine neonates. Pediatr Res. 1995;38(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  173. Morriss Jr FH, Moore M, Weisbrodt NW, West MS. Ontogenic development of gastrointestinal motility: IV. Duodenal contractions in preterm infants. Pediatrics. 1986;78(6):1106–13.

    PubMed  Google Scholar 

  174. Tomomasa T, Kuroume T, Arai H, Wakabayashi K, Itoh Z. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig Dis Sci. 1986;31(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  175. Sarna SK, Soergel KH, Koch TR, Stone JE, Wood CM, Ryan RP, Arndorfer RC, Cavanaugh JH, Nellans HN, Lee MB. Gastrointestinal motor effects of erythromycin in humans. Gastroenterology. 1991;101(6):1488–96.

    Article  CAS  PubMed  Google Scholar 

  176. Tomomasa T, Miyazaki M, Koizumi T, Kuroume T. Erythromycin increases gastric antral motility in human premature infants. Biol Neonate. 1993;63(6):349–52.

    Article  CAS  PubMed  Google Scholar 

  177. Costalos C, Gounaris A, Varhalama E, Kokori F, Alexiou N, Kolovou E. Erythromycin as a prokinetic agent in preterm infants. J Pediatr Gastroenterol Nutr. 2002;34(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  178. ElHennawy AA, Sparks JW, Armentrout D, Huseby V, Berseth CL. Erythromycin fails to improve feeding outcome in feeding-intolerant preterm infants. J Pediatr Gastroenterol Nutr. 2003;37(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  179. Breuer C, Oh J, Molderings GJ, Schemann M, Kuch B, Mayatepek E, Adam R. Therapy-refractory gastrointestinal motility disorder in a child with c-kit mutations. World J Gastroenterol. 2010;16(34):4363–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol. 1997;92(2):332–4.

    CAS  PubMed  Google Scholar 

  181. Kenny SE, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA. Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg. 1998;33(1):130–2.

    Article  CAS  PubMed  Google Scholar 

  182. Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg. 1998;33(6):859–62.

    Article  CAS  PubMed  Google Scholar 

  183. Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch HP, Krammer HJ. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology. 2002;123(5):1459–67.

    Article  PubMed  Google Scholar 

  184. Taguchi T, Suita S, Masumoto K, Nagasaki A. An abnormal distribution of C-kit positive cells in the normoganglionic segment can predict a poor clinical outcome in patients with Hirschsprung’s disease. Eur J Pediatr Surg. 2005;15(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  185. Burns AJ. Disorders of interstitial cells of Cajal. J Pediatr Gastroenterol Nutr. 2007;45 Suppl 2:S103–6.

    Article  PubMed  Google Scholar 

  186. Bettolli M, De Carli C, Jolin-Dahel K, Bailey K, Khan HF, Sweeney B, Krantis A, Staines WA, Rubin S. Colonic dysmotility in postsurgical patients with Hirschsprung’s disease. Potential significance of abnormalities in the interstitial cells of Cajal and the enteric nervous system. J Pediatr Surg. 2008;43(8):1433–8.

    Article  PubMed  Google Scholar 

  187. Kapur RP, Robertson SP, Hannibal MC, Finn LS, Morgan T, van Kogelenberg M, Loren DJ. Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am J Surg Pathol. 2010;34(10):1528–43.

    Article  PubMed  Google Scholar 

  188. Angstenberger M, Wegener JW, Pichler BJ, Judenhofer MS, Feil S, Alberti S, Feil R, Nordheim A. Severe intestinal obstruction on induced smooth muscle-specific ablation of the transcription factor SRF in adult mice. Gastroenterology. 2007;133(6):1948–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to the Jadcherla Lab for their assistance with this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan R. Jadcherla MD, FRCPI, DCH, AGAF .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckett, E.A., Young, H.M., Bornstein, J.C., Jadcherla, S.R. (2017). Development of Gut Motility. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-43268-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43268-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43266-3

  • Online ISBN: 978-3-319-43268-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics