Skip to main content

Environment Adaption for Companion-Systems

  • Chapter
  • First Online:
Companion Technology

Part of the book series: Cognitive Technologies ((COGTECH))

  • 766 Accesses

Abstract

One of the key characteristics of a Companion-System is the adaptation of its functionality to the user’s preferences and the environment. On the one hand, a dynamic environment model facilitates the adaption of output modalities in human computer interaction (HCI) to the current situation. On the other hand, continuous tracking of users in the proximity of the system allows for resuming a previously interrupted interaction. Thus, an environment perception system based on a robust multi-object tracking algorithm is required to provide these functionalities. In typical Companion-System applications, persons in the proximity are closely spaced, which leads to statistical dependencies in their behavior. The multi-object Bayes filter allows for modeling these statistical dependencies by representing the multi-object state using random finite sets. Based on the social force model and the knowledge base of the companion system, an approach to modeling object interactions is presented. In this work, the interaction model is incorporated into the prediction step of the sequential Monte Carlo (SMC) of the multi-object Bayes filter. Further, an alternative implementation of the multi-object Bayes filter based on labeled random finite sets is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that the number of components of the δ-GLMB distribution increases during these steps.

References

  1. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic, New York (1988)

    MATH  Google Scholar 

  2. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user assistance based on AI planning. Cogn. Syst. Res. 12(3-4), 219–236 (2011). doi:10.1016/j.cogsys.2010.12.005. http://www.sciencedirect.com/science/article/B6W6C-51TGG9K-1/2/4f8891da44f7fbe776d553396911a589. Special Issue on Complex Cognition

    Google Scholar 

  3. Geier, T., Biundo, S., Reuter, S., Dietmayer, K.: Track-person association using a first-order probabilistic model. In: IEEE 24th International Conference on Tools with Artificial Intelligence, vol. 1, pp. 844–851 (2012). doi:10.1109/ICTAI.2012.118

    Google Scholar 

  4. Geier, T., Reuter, S., Dietmayer, K., Biundo, S.: Goal-based person tracking using a first-order probabilistic model. In: Proceedings of the Ninth UAI Bayesian Modeling Applications Workshop (UAI-AW 2012) (2012)

    Google Scholar 

  5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995). doi:10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  6. Henderson, L.F.: The statistics of crowd fluids. Nature 229, 381–383 (1971)

    Article  Google Scholar 

  7. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Google Scholar 

  8. Ma, W.K., Vo, B.N., Singh, S., Baddeley, A.: Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach. IEEE Trans. Signal Process. 54, 3291–3304 (2006)

    Article  MATH  Google Scholar 

  9. Mahler, R.: Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003). doi:10.1109/TAES.2003.1261119

    Article  Google Scholar 

  10. Mahler, R.: PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1523–1543 (2007). doi:10.1109/TAES.2007.4441756

    Article  Google Scholar 

  11. Mahler, R.: Statistical Multisource-Multitarget Information Fusion. Artech House Inc, Norwood (2007)

    MATH  Google Scholar 

  12. Mählisch, M.: Filtersynthese zur simultanen Minimierung von Existenz-, Assoziations- und Zustandsunsicherheiten in der Fahrzeugumfelderfassung mit heterogenen Sensordaten. Ph.D. thesis, Ulm University (2009)

    Google Scholar 

  13. Maskell, S.: Sequentially structured Bayesian solutions. Ph.D. thesis, Cambridge University (2004)

    Google Scholar 

  14. Munz, M., Mählisch, M., Dietmayer, K.: Generic centralized multi sensor data fusion based on probabilistic sensor and environment models for driver assistance systems. IEEE Intell. Transp. Syst. Mag. 2(1), 6–17 (2010). doi:10.1109/MITS.2010.937293

    Article  Google Scholar 

  15. Murty, K.: An algorithm for ranking all the assignments in order of increasing cost. Oper. Res. 16, 682–687 (1968)

    Article  MATH  Google Scholar 

  16. Musicki, D., Evans, R.: Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1093–1099 (2004). doi:10.1109/TAES.2004.1337482

    Article  Google Scholar 

  17. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: Proceedings of the 12th IEEE International Conference on Computer Vision, pp. 261–268 (2009). doi:10.1109/ICCV.2009.5459260

    Google Scholar 

  18. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979). doi:10.1109/TAC.1979.1102177

    Article  Google Scholar 

  19. Reuter, S.: Multi-object tracking using random finite sets. Ph.D. thesis, Ulm University (2014)

    Google Scholar 

  20. Reuter, S., Dietmayer, K.: Pedestrian tracking using random finite sets. In: Proceedings of the 14th International Conference on Information Fusion, pp. 1–8 (2011)

    Google Scholar 

  21. Reuter, S., Dietmayer, K., Handrich, S.: Real-time implementation of a random finite set particle filter. In: Proceedings of the 6th Workshop Sensor Data Fusion: Trends, Solutions, Applications (2011). http://www.user.tu-berlin.de/komm/CD/paper/100149.pdf

    Google Scholar 

  22. Reuter, S., Wilking, B., Wiest, J., Munz, M., Dietmayer, K.: Real-time multi-object tracking using random finite sets. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2666–2678 (2013). doi:10.1109/TAES.2014.6619956

    Article  Google Scholar 

  23. Reuter, S., Vo, B.T., Vo, B.N., Dietmayer, K.: The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 62(12), 3246–3260 (2014)

    Article  MathSciNet  Google Scholar 

  24. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006). doi:10.1007/s10994-006-5833-1. http://www.springerlink.com/index/10.1007/s10994-006-5833-1

    Article  Google Scholar 

  25. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House Inc., Norwood (2004)

    MATH  Google Scholar 

  26. Sidenbladh, H., Wirkander, S.L.: Tracking random sets of vehicles in terrain. In: Conference on Computer Vision and Pattern Recognition Workshop, p. 98 (2003). doi:10.1109/CVPRW.2003.10097

    Google Scholar 

  27. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Vo, B.N., Ma, W.K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4104 (2006). doi:10.1109/TSP.2006.881190

    Article  MATH  Google Scholar 

  29. Vo, B.T., Vo, B.N.: Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process. 61(13), 3460–3475 (2013)

    Article  MathSciNet  Google Scholar 

  30. Vo, B.N., Singh, S., Doucet, A.: Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1224–1245 (2005). doi:10.1109/TAES.2005.1561884

    Article  Google Scholar 

  31. Vo, B.T., Vo, B.N., Cantoni, A.: Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. Signal Process. 55(7), 3553–3567 (2007). doi:10.1109/TSP.2007.894241

    Article  MathSciNet  Google Scholar 

  32. Vo, B.T., Vo, B.N., Cantoni, A.: The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 57(2), 409–423 (2009). doi:10.1109/TSP.2008.2007924

    Article  MathSciNet  Google Scholar 

  33. Zajic, T., Mahler, R.: A particle-systems implementation of the PHD multitarget-tracking filter. In: Signal Processing, Sensor Fusion, and Target Recognition XII, SPIE, vol. 5096, pp. 291–299, Bellingham, WA (2003)

    Google Scholar 

Download references

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Reuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reuter, S., Scheel, A., Geier, T., Dietmayer, K. (2017). Environment Adaption for Companion-Systems. In: Biundo, S., Wendemuth, A. (eds) Companion Technology. Cognitive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43665-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43665-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43664-7

  • Online ISBN: 978-3-319-43665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics