Skip to main content

The Influence of Different Additives on MgB2 Superconductor Obtained by Ex Situ Spark Plasma Sintering: Pinning Force Aspects

  • Chapter
  • First Online:
Correlated Functional Oxides

Abstract

Superconducting samples of MgB2 prepared by ex situ spark plasma sintering were characterized by magnetic measurements emphasizing functional characteristics such as the critical current density J c, the irreversibility field H irr or the product J c(0) · µ0 · H irr, and the pinning-force-related parameters extracted within the universal scaling law and the percolation-based theory. Additions introduced into MgB2 were classified as following: approximately chemically inert (type 1: h-BN, c-BN, and graphene), reactive with formation of MyBz (type 2: RE2O3 with RE being a rare earth element such as Ho, La, or Eu) or MguMv (type 3: Sb, Sb2O3, Bi, Bi2O3, Te, TeO2, Ge, and GeO2), and additives which are source of carbon substituting for boron in the crystal lattice of MgB2 (type 4: fullerene (F), F + c-BN, SiC + Te, Ge2H10C6O7, and B4C). Each group of additives show specific features, but within each group there are differences. When considering the influence of the additive of types 1–3, one has to pay attention also to substitutional x-carbon level which shows a strong influence on the functional and on the pinning-force-related parameters. A general trend is that at low x and high temperatures (>~15 K), samples are in the point pinning region and contribution of the grain boundary pinning is increasing when the additive amount is higher and the temperature is lower. There are also exceptions and within the general trend there are notable differences among the samples. From a practical point of view, additives such as c-BN, Te, Ge2H10C6O7, or B4C are shown to increase high magnetic field functional characteristics such as J c and H irr, while suppression of J c at low magnetic fields is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Caplin, Y. Bugoslavsky, L.F. Cohen, L. Cowey, J. Driscoll, J. Moore, G.K. Perkins, Critical fields and critical currents in MgB2. Supercond. Sci. Technol. 16, 176 (2003)

    Article  Google Scholar 

  2. D.C. Larbalestier et al., Strongly linked current flow in polycrystalline forms of the new superconductor MgB2. Nature 410, 186 (2001)

    Article  Google Scholar 

  3. P. Badica, G. Aldica, M. Burdusel, S. Popa, R.F. Negrea, M. Enculescu, I. Pasuk, L. Miu, Significant enhancement of the critical current density for cubic BN addition into ex situ spark plasma sintered MgB2. Supercond. Sci. Technol. 27, 095013 (2014)

    Article  Google Scholar 

  4. G. Aldica, M. Burdusel, S. Popa, Y. Hayasaka, P. Badica, Graphene addition to MgB2 superconductor obtained by ex-situ spark plasma sintering technique. Mater. Res. Bull. 77, 205 (2016)

    Article  Google Scholar 

  5. D. Batalu, G. Aldica, M. Burdusel, P. Badica, Short review on rare earth and metalloid oxide additions to MgB2 as a candidate superconducting material for medical applications. Key Eng. Mater. 638, 357 (2015)

    Article  Google Scholar 

  6. M. Burdusel, G. Aldica, S. Popa, M. Enculescu, P. Badica, MgB2 with addition of Sb2O3 obtained by spark plasma sintering technique. J. Mat. Sci. 47, 3828 (2012)

    Article  Google Scholar 

  7. M. Burdusel, G. Aldica, S. Popa, M. Enculescu, I. Pasuk, P. Badica, MgB2 with addition of Bi2O3 obtained by spark plasma sintering technique. J. Supercond. Nov. Magn. 26, 1553 (2013)

    Article  Google Scholar 

  8. G. Aldica, S. Popa, M. Enculescu, P. Badica, Enhancement of critical current density and irreversibility field by Te or TeO2 addition to MgB2 bulk processed by spark plasma sintering. Scripta Mater. 66, 570 (2012)

    Article  Google Scholar 

  9. D. Batalu, G. Aldica, S. Popa, L. Miu, M. Enculescu, R.F. Negrea, I. Pasuk, P. Badica, High magnetic field enhancement of the critical current density by Ge, GeO2 and Ge2C6H10O7 additions to MgB2. Scripta Mater. 82, 61 (2014)

    Article  Google Scholar 

  10. J.C. Gianduzzo, R. Georges, B. Chevalier, J. Etourneau, P. Hagenmuller, G. Will, W. Schafer, Anisotropy and magnetic phase transitions in the rare earth tetraborides TbB4, HoB4 and ErB4. J. Less-Common Met. 82, 29 (1981)

    Article  Google Scholar 

  11. C. Koehler, A. Mook, Z. Fisk, M. Maple, Abstract: Neutron diffraction study of the magnetic structures of HoB4. J. Appl. Phys. 53, 1966 (1982)

    Article  Google Scholar 

  12. C. Cheng, Y. Zhao, Enhancement of critical current density of MgB2 by doping Ho2O3. Appl. Phys. Lett. 89, 252501 (2006)

    Article  Google Scholar 

  13. G. Aldica, S. Popa, M. Enculescu, D. Batalu, L. Miu, M. Ferbinteanu, P. Badica, Addition of Ho2O3 of different types to MgB2 in the ex-situ Spark Plasma Sintering: Simultaneous control of the critical current density at low and high magnetic fields. Mater. Chem. Phys. 146, 313 (2014)

    Article  Google Scholar 

  14. V. Sandu, P. Badica, G. Aldica, M. Ferbinteanu, Y. Hayasaka, Doping of MgB2 with molecular magnets as precursors. J. Supercond. Nov. Magn. 27, 1111 (2014)

    Article  Google Scholar 

  15. K.S.B. De Silva, X. Xu, W.X. Li, Y. Zhang, M. Rindfleisch, M. Tomsic, Improving superconducting properties of MgB2 by graphene doping. IEEE Trans. Appl. Supercond. 21, 2686–2689 (2011)

    Article  Google Scholar 

  16. X. Xu, W.X. Li, Y. Zhang, K.S.B. De Silva, J.H. Kim, S. Choi, The effects of graphene doping on the in-field Jc of MgB2 wires. J. Nanosci. Nanotechnol. 12, 1402 (2012)

    Article  Google Scholar 

  17. Y. Zhao, C.H. Chen, X.F. Rui, H. Zhang, P. Munroe, H.M. Zeng, N. Koshizuka, M. Murakami, Improved irreversibility behavior and critical current density in MgB2-diamond nanocomposites. Appl. Phys. Lett. 83, 2916 (2003)

    Article  Google Scholar 

  18. A. Vajpayee, V.P.S. Awana, H. Kishan, A.V. Narlikar, G.L. Bhalla, X.L. Wang, High field performance of nano-diamond doped MgB2 superconductor. J. Appl. Phys. 103, 07C708 (2008)

    Article  Google Scholar 

  19. J.Q. Wei, Y.H. Li, C.L. Xu, B.Q. Wei, D.H. Wu, Structure and superconductivity of MgB2–carbon nanotube composites. Mater. Chem. Phys. 78, 785 (2003)

    Article  Google Scholar 

  20. S.X. Dou, W.K. Yeoh, J. Horvat, M. Ionescu, Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83, 4996 (2003)

    Article  Google Scholar 

  21. S.K. Chen, K.S. Tan, B.A. Glowacki, W.K. Yeoh, S. Soltanian, J. Horvat, S.X. Dou, Effect of heating rates on superconducting properties of pure MgB2, carbon nanotube- and nano-SiC-doped in situ MgB2/Fe wires. Appl. Phys. Lett. 87, 182504 (2005)

    Article  Google Scholar 

  22. C. Shekhar, R. Giri, S.K. Malik, O.N. Srivastava, Improved critical current density of MgB2 carbon nanotubes (CNTs) composite. J. Nanosci. Nanotechnol. 7, 1804 (2007)

    Article  Google Scholar 

  23. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 (2002)

    Article  Google Scholar 

  24. H. Kumakura, H. Kitaguchi, A. Matsumoto, H. Hatakeyama, Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors. Appl. Phys. Lett. 84, 3669 (2004)

    Article  Google Scholar 

  25. X.P. Zhang, Y.W. Ma, Z.S. Gao, Z.G. Yu, K. Watanabe, H.H. Wen, Effect of nanoscale C and SiC doping on the superconducting properties of MgB2 tapes. Acta Phys. Sinica 55, 4873 (2006)

    Google Scholar 

  26. H. Yamada, N. Uchiyama, A. Matsumoto, H. Kitaguchi, H. Kumakura, The excellent superconducting properties of in situ powder-in-tube processed MgB2 tapes with both ethyltoluene and SiC powder added. Supercond. Sci. Technol. 20, L30 (2007)

    Article  Google Scholar 

  27. X.P. Zhang, Y.W. Ma, D.L. Wang, Z.S. Gao, L. Wang, Y.P. Qi, S. Awaji, K. Watanabe, D.N. Zheng, Co-doping effect of nanoscale C and SiC on MgB2 superconductor. IEEE Trans. Appl. Supercond. 19, 2694 (2009)

    Article  Google Scholar 

  28. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 386, 177 (2005)

    Article  Google Scholar 

  29. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18, 1323 (2005)

    Article  Google Scholar 

  30. Y.B. Zhang, J.S. Xue, X.W. Bai, T.Y. Liu, H.M. Zhu, C.B. Cai, In situ synthesis and current-carrying characteristics of superconducting MgB2–B4C composites with MgB2 fractions ranging from 18 % to 85 %. Supercond. Sci. Technol. 25, 095003 (2012)

    Article  Google Scholar 

  31. J.H. Kim, S. Zhou, M.S.A. Hossain, A.V. Pan, S.X. Dou, Carbohydrate doping to enhance electromagnetic properties of MgB2 superconductors. Appl. Phys. Lett. 89, 142505 (2006)

    Article  Google Scholar 

  32. H. Yamada, N. Uchiyama, A. Matsumoto, H. Kitaguchi, H. Kumakura, The excellent superconducting properties of in situ powder-in-tube processed MgB2 tapes with both ethyltoluene and SiC powder added. Supercond. Sci. Technol. 20, L30 (2007)

    Article  Google Scholar 

  33. M. Maeda, J.H. Kim, Y. Zhao, Y.U. Heo, K. Takase, Y. Kubota, C. Moriyoshi, F. Yoshida, Y. Kuroiwa, S.X. Dou, In-field Jc improvement by oxygen-free pyrene gas diffusion into highly dense MgB2 superconductor. J. Appl. Phys. 109, 023904 (2011)

    Article  Google Scholar 

  34. S.G. Kang, J.-K. Chung, S.C. Park, B.H. Jun, C.-J. Kim, TEM analysis of the interfacial defects in the superconducting C-doped MgB2 wires. Phys. C 468, 1836 (2008)

    Article  Google Scholar 

  35. S.D. Bohnenstiehl, M.A. Susner, Y. Yang, E.W. Collings, M.D. Sumption, M.A. Rindfleisch, R. Boone, Carbon doping of MgB2 by toluene and malic-acid-in-toluene. Physica C 471, 108 (2011)

    Article  Google Scholar 

  36. O.V. Shcherbakova, A.V. Pan, D. Wexler, S.X. Dou, Superconducting properties of MgB2: Polycarbosilane versus conventional Nano-SiC doping. IEEE Trans. Appl. Supercond. 17, 2790 (2007)

    Article  Google Scholar 

  37. V. Sandu, E. Cimpoiasu, G.V. Aldica, S. Popa, E. Sandu, S.B. Vasile, N. Hurduc, I. Nor, Use of preceramic polymers for magnesium diboride composites. Phys. C 480, 102 (2012)

    Article  Google Scholar 

  38. L. Miu, G. Aldica, P. Badica, I. Ivan, D. Miu, G. Jakob, Improvement of the critical current density of spark plasma sintered MgB2 by C60 addition. Supercond. Sci. Technol. 23, 095002 (2010)

    Google Scholar 

  39. S.X. Dou, O. Shcherbakova, W.K. Yoeh, J.H. Kim, S. Soltanian, X.L. Wang, C. Senatore, R. Flukiger, M. Dhalle, O. Husnjak, E. Babic, Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev. Lett. 98, 097002 (2007)

    Article  Google Scholar 

  40. S.X. Dou, A.V. Pan, S. Zhou, M. Ionescu, X.L. Wang, J. Horvat, H.K. Liu, P.R. Munroe, Superconductivity, critical current density, and flux pinning in MgB2−x (SiC)x/2 superconductor after SiC nanoparticle doping. J. Appl. Phys. 94, 1850 (2003)

    Article  Google Scholar 

  41. W.K. Yeok, X.Y. Cui, B. Gault, K.S.B. De Silva, X. Xu, H.W. Liu, H.-W. Yen, D. Wong, P. Bao, D.J. Larson, I. Martin, W.X. Li, R.K. Zheng, X.L. Wang, S.X. Dou, S.P. Ringer, On the roles of graphene oxide doping for enhanced supercurrent in MgB2 based superconductors. Nanoscale 6, 6166 (2014)

    Article  Google Scholar 

  42. B. Kang, H.-S. Lee, M.-S. Park, S.-I. Lee, Effect of Al doping on the irreversible magnetization of MgB2 single crystals. J. Korean Phys. Soc. 53, 1053 (2008)

    Article  Google Scholar 

  43. P. Mikheenko, S. K. Chen, J. L. MacManus-Driscoll, Minute pinning and doping additions for strong, 20 K, in-field critical current improvement in MgB2. Appl. Phys. Lett. 91, 202508 (2007)

    Google Scholar 

  44. J.R. Groza, A. Zavaliangos, Sintering activation by external electrical field. Mater. Sci. Eng., A 287, 171 (2000)

    Article  Google Scholar 

  45. W.A. Fietz, W.W. Webb, Hysteresis in superconducting alloys—temperature and field dependence of dislocation pinning in niobium alloys. Phys. Rev. B 178, 657 (1969)

    Article  Google Scholar 

  46. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Phil. Mag. 30, 293 (1974)

    Article  Google Scholar 

  47. M. Eisterer, Calculation of the volume pinning force in MgB2 superconductors. Phys. Rev. B 77, 144524 (2008)

    Article  Google Scholar 

  48. G.W. Marks, L.A. Monson, Effect of certain group IV oxides on dielectric constant and dissipation factor of barium titanate. Ind. Eng. Chem. 47, 1611 (1955)

    Article  Google Scholar 

  49. L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Inst. Methods Phys. Res. B 268, 334 (2010)

    Article  Google Scholar 

  50. S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, S. Tajima, Crystal growth of C-doped MgB2 superconductors: accidental doping and inhomogeneity. Phys. C 412–414, 31 (2004)

    Article  Google Scholar 

  51. C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962)

    Article  Google Scholar 

  52. D.-X. Chen, J. Nogues, K.V. Rao, Ac susceptibility and intergranular critical current density of high Tc superconductor. Cryogenics 29, 800 (1989)

    Article  Google Scholar 

  53. V. Sandu, Pinning-force scaling and its limitation in intermediate and high temperature superconductors. Mod. Phys. Lett. B 26, 1230007 (2012)

    Article  Google Scholar 

  54. E. Martinez, P. Mikheenko, M. Martinez-Lopez, A. Millan, A. Bevan, J.S. Abell, Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B 75, 134515 (2007)

    Article  Google Scholar 

  55. M. Eisterer, Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20, R47 (2007)

    Article  Google Scholar 

  56. E.M. Georgy, R.B. van Dover, K.A. Jackson, L.F. Scheemeyer, J.V. Waszczak, Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55, 283 (1989)

    Article  Google Scholar 

  57. D. Batalu, G. Aldica, P. Badica, Superconducting nano-composites of MgB2 with rare-earth based additives obtained by spark plasma sintering method, in Treatise of Materials Science and Engineering, vol. VI, ed, by N. Ghiban, M. Cojocaru (AGIR, Bucharest (2015) ISBN 978-973-720-533-9 (in Romanian), pp. 1037–1060

    Google Scholar 

  58. D. Batalu, G. Aldica, M. Burdusel, S. Popa, M. Enculescu, I. Pasuk, D. Miu, P. Badica, Ge-added superconductor obtained by ex-situ spark plasma sintering. J. Supercond. Nov. Mag. 28, 531 (2015)

    Article  Google Scholar 

  59. D. Batalu, G. Aldica, S. Popa, A. Kuncser, V. Mihalache, P. Badica, GeO2-added MgB2 superconductor obtained by ex-situ spark plasma sintering. Solid State Sci. 48, 23 (2015)

    Article  Google Scholar 

  60. A.M. Ionescu, G. Aldica, S. Popa, M. Enculescu, V. Sandu, I. Pasuk, A. Kuncser, L. Miu, P. Badica, Spark plasma sintered MgB2 co-added with c-BN and C60. Mater. Chem. Phys. 170, 201 (2016)

    Article  Google Scholar 

  61. G. Aldica, S. Popa, M. Enculescu, P. Badica, Te and SiC co-doped MgB2 obtained by an ex situ spark plasma sintering technique. Scripta Mater. 68, 428 (2013)

    Article  Google Scholar 

  62. M. Burdusel, G. Aldica, S. Popa, M. Enculescu, V Mihalache, A. Kuncser, I Pasuk, and P. Badica, B 4 C in ex-situ spark plasma sintered MgB 2 . Curr. Appl. Phys. 15, 1262 (2015)

    Google Scholar 

  63. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18, 1323 (2005)

    Article  Google Scholar 

  64. H.J. Lim, S.H. Jang, S.M. Hwang, J.H. Choi, J. Joo, W.N. Kang, C. Kim, Effects of the sintering temperature and doping of C60 and SiC on the critical properties of MgB2. Phys. C 468, 1829 (2008)

    Article  Google Scholar 

  65. B. Birajdar, O. Eibl, Microstructure critical current density model for MgB2 wires and tapes. J. Appl. Phys. 105, 033903 (2009)

    Article  Google Scholar 

  66. J.H. Kim, S. Oh, Y.-U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J.L. MacManus-Driscol, S.X. Dou, Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi. NPG Asia Mater. 4, e3 (2012)

    Article  Google Scholar 

  67. J.H. Durrell, C.E.J. Dancer, A. Dennis, Y. Shi, Z. Xu, A.M. Campbell, N.H. Babu, R.I. Todd, C.R.M. Grovenor, D.A. Cardwell, A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing. Supercond. Sci. Technol. 25, 112002 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed within Partnership program in the priority domains—PN II, funded by MEN-UEFISCDI, project No. 214/2014 BENZISUPRA, Romania. Authors thank Dr. V. Sandu and Dr. L. Miu for useful comments, Dr. S. Popa, Dr. V. Mihalache, Dr. I. Pasuk, Dr. M. Enculescu, and Y. Hayasaka, Dr. R.F. Negrea, and A. Kuncser for helping with magnetization measurements, XRD measurements, Rietveld refinements, SEM, and TEM observations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Badica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Badica, P., Aldica, G., Ionescu, A.M., Burdusel, M., Batalu, D. (2017). The Influence of Different Additives on MgB2 Superconductor Obtained by Ex Situ Spark Plasma Sintering: Pinning Force Aspects. In: Nishikawa, H., Iwata, N., Endo, T., Takamura, Y., Lee, GH., Mele, P. (eds) Correlated Functional Oxides. Springer, Cham. https://doi.org/10.1007/978-3-319-43779-8_4

Download citation

Publish with us

Policies and ethics