Skip to main content

The Use of Femtosecond Laser and Corneal Welding in the Surgery of Keratoconus

  • Chapter
  • First Online:
Keratoconus

Abstract

The laser-assisted lamellar and penetrating keratoplasty, supported by the use of laser welding procedure, is particularly suitable for keratoconus patients. Laser welding approach is based on the use of a near infrared laser that induces a photothermal effect mediated by a biocompatible chromophore (Indocyanine Green).

The main characteristic is to provide an a immediate closure of the surgical wound, a fast healing process, and a stable biomechanical result. These effects in the postoperative period are of particular importance in young patients, i.e. in keratoconus patients, providing them the possibility to perform sports and any working activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buzzonetti L, Petrocelli G, Valente P. Femtosecond laser and big-bubble deep anterior lamellar keratoplasty: a new chance. J Ophthalmol. 2012;2012:264590. doi:10.1155/2012/264590.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Canovetti A, Malandrini A, Lenzetti I, Rossi F, Pini R, Menabuoni L. Laser-assisted penetrating keratoplasty: one year’s results in patients, using a laser-welded “anvil”-profiled graft. Am J Ophthalmol. 2014. doi:10.1016/j.ajo.2014.07.010.

    Google Scholar 

  3. Levinger E, Trivizki O, Levinger S, Kremer I. Outcome of “mushroom” pattern femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty in patients with keratoconus. Cornea. 2014;33(5):481–5. doi:10.1097/ICO.0000000000000080.

    Article  PubMed  Google Scholar 

  4. Shehadeh-Mashor R, Chan CC, Bahar I, Lichtinger A, Yeung SN, Rootman DS. Comparison between femtosecond laser mushroom configuration and manual trephine straight-edge configuration deep anterior lamellar keratoplasty. Br J Ophthalmol. 2014;98(1):35–9. doi:10.1136/bjophthalmol-2013-303737.

    Article  PubMed  Google Scholar 

  5. Shivanna Y, Nagaraja H, Kugar T, Shetty R. Femtosecond laser enabled keratoplasty for advanced keratoconus. Indian J Ophthalmol. 2013;61(8):469–72. doi:10.4103/0301-4738.116060.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jain KK, Gorisch W. Repair of small blood vessels with the neodymium-YAG laser: a preliminary report. Surgery. 1979;85(6):684–8.

    CAS  PubMed  Google Scholar 

  7. McNally KM. Chapter 39: Laser tissue welding. In: Vo-Dihn T, editor. Biomedical photonics handbook. Boca Raton: CRC Press; 2003. p. 1–45.

    Google Scholar 

  8. Pini R, Rossi F, Matteini P, Ratto F. Laser tissue welding in minimally invasive surgery and microsurgery. In: Pavesi L, Fauchet PM, editors. Biophotonics, Biological and medical physics, biomedical engineering. Berlin: Springer; 2008. p. 275–99.

    Chapter  Google Scholar 

  9. Poppas DP, Scherr DS. Laser tissue welding: a urological surgeon’s perspective. Haemophilia. 1998;4(4):456–62.

    Article  CAS  PubMed  Google Scholar 

  10. Ott B, Zuger BJ, Erni D, Banic A, Schaffner T, Weber HP, Frenz M. Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser. Lasers Med Sci. 2001;16(4):260–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi F, Pini R, Menabuoni L, Mencucci R, Menchini U, Ambrosini S, Vannelli G. Experimental study on the healing process following laser welding of the cornea. J Biomed Opt. 2005;10(2):024004.

    Article  PubMed  Google Scholar 

  12. Buzzonetti L, Capozzi P, Petrocelli G, Valente P, Petroni S, Menabuoni L, Rossi F, Pini R. Laser welding in penetrating keratoplasty and cataract surgery in pediatric patients: early results. J Cataract Refract Surg. 2013;39(12):1829–34. doi:10.1016/j.jcrs.2013.05.046.

    Article  PubMed  Google Scholar 

  13. Menabuoni L, Pini R, Rossi F, Lenzetti I, Yoo SH, Parel J-M. Laser-assisted corneal welding in cataract surgery: a retrospective study. J Cataract Refract Surg. 2007;33:1608–12.

    Article  PubMed  Google Scholar 

  14. Rossi F, Pini R, Menabuoni L. Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea. J Biomed Opt. 2007;12(1):014031.

    Article  PubMed  Google Scholar 

  15. Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R. Laser tissue welding in ophthalmic surgery. J Biophotonics. 2008;1:331–42.

    Article  PubMed  Google Scholar 

  16. Menabuoni L, Canovetti A, Rossi F, Malandrini A, Lenzetti I, Pini R. The ‘anvil’ profile in femtosecond laser-assisted penetrating keratoplasty. Acta Ophthalmol. 2013;91:e494–5. doi:10.1111/aos.12144.

    Article  CAS  PubMed  Google Scholar 

  17. Rossi F, Canovetti A, Malandrini A, Lenzetti I, Pini R, Menabuoni L. An “All-laser” endothelial transplant. J Vis Exp. 2015;(101):e52939. doi:10.3791/52939.

  18. Savage HE, Halder RK, Kartazayeu U, Rosen RB, Gayen T, McCormick SA, Patel NS, Katz A, Perry HD, Paul M, Alfano RR. A NIR laser tissue welding of in vitro porcine cornea and sclera tissue. Lasers Surg Med. 2004;35(4):293–303.

    Article  PubMed  Google Scholar 

  19. Matteini P, Rossi F, Menabuoni L, Pini R. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue. Lasers Surg Med. 2007;39:597–604.

    Article  PubMed  Google Scholar 

  20. Menovsky T, Beek JF, van Gemert MJC. Laser tissue welding of dura mater and peripheral nerves: a scanning electron microscopy study. Lasers Surg Med. 1996;19(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  21. Schober R, Ulrich F, Sander T, Durselen H, Hessel S. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science. 1986;232(4756):1421–2.

    Article  CAS  PubMed  Google Scholar 

  22. Matteini P, Ratto F, Rossi F, Cicchi R, Stringari C, Kapsokalyvas D, Pavone FS, Pini R. Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Optics Exp. 2009;17:4868–78.

    Article  CAS  Google Scholar 

  23. Matteini P, Sbrana F, Tiribilli B, Pini R. Atomic force microscopy and transmission electron microscopy analyses on low-temperature laser welding of the cornea. Lasers Med Sci. 2009;24:667–71.

    Article  PubMed  Google Scholar 

  24. Tan HY, Teng SW, Lo W, Lin WC, Lin SJ, Jee SH, Dong CY. Characterizing the thermally induced structural changes to intact porcine eye, part 1: second harmonic generation imaging of cornea stroma. J Biomed Opt. 2005;10:540191–5.

    Article  Google Scholar 

  25. Murray LW, Su L, Kopchok GE, White RA. Crosslinking of extracellular matrix proteins: a preliminary report on a possible mechanism of argon laser welding. Lasers Surg Med. 1989;9(5):490–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug non contact tonometry. Optom Vis Sci. 2013;90:e1-8.

    Article  PubMed  Google Scholar 

  27. Maeda N, Ueki R, Fuchilhata M, Fujimoto H, Koh S, Nishida K. Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol. 2014;58:483–9.

    Article  PubMed  Google Scholar 

  28. Yenerel NM, Kucumen RB, Gorgun E. Changes in corneal biomechanics in patients with keratoconus after penetrating keratoplasty. Cornea. 2010;29(11):1247–51.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Luca Menabuoni, Annalisa Canovetti, Alex Malandrini, Ivo Lenzetti, Roberto Pini, and Francesca Rossi declare that they have no conflict of interest.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rossi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Menabuoni, L., Malandrini, A., Canovetti, A., Lenzetti, I., Pini, R., Rossi, F. (2017). The Use of Femtosecond Laser and Corneal Welding in the Surgery of Keratoconus. In: Alió, J. (eds) Keratoconus. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-43881-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43881-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43879-5

  • Online ISBN: 978-3-319-43881-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics