Skip to main content

Modelling the Voids Growth in Ductile Fracture

  • Chapter
  • First Online:
Multiscale Modelling in Sheet Metal Forming

Part of the book series: ESAFORM Bookseries on Material Forming ((EBMF))

  • 1160 Accesses

Abstract

Ductile fracture in metals and metallic alloys is due to the evolution of microscopic voids during plastic deformation. Voids nucleate around foreign inclusions or at grain boundaries and grow in regions with large triaxial stresses. Larger voids promote the formation of bands of localized deformation where new small voids are nucleated, thus forming a macroscopic crack. The microscopic dimples present on ductile fracture faces are a direct proof for such a mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We anticipate here the use of Tabanov’s natural coordinates \( r,\theta ,\phi \) for the spheroidal and ellipsoidal coordinates, with a pseudo-radial and two angular coordinates; see Sect. 4.3.

  2. 2.

    There is also a similar result in Lewis (1996) for the gradient of \( F. \)

  3. 3.

    For arbitrary values of the exponent, this integral is expressible as a hypergeometric function.

  4. 4.

    Hereafter we use the usual convention of summing over repeated indices.

  5. 5.

    Multiplied by some leading terms involving square roots.

  6. 6.

    These polynomials are also homogeneous only in the spherical case.

  7. 7.

    We use the same notation for the basis on M and N as there is no confusion possible.

  8. 8.

    The entire argument applies equally well to another second order operator—the Laplacian written as div grad. There is no reason an arbitrary diffeomorphism will preserve harmonic functions. But transformed harmonic functions are still harmonic is we redefine the Laplacian using the transformed metric. This simple idea is the key to all recent work on cloaking transformations.

References

  • Abbasi M, Ketabchi M, Izadkhah H, Fatmehsaria DH, Aghbash AN (2011) Identification of GTN model parameters by application of response surface methodology. Procedia Eng 10:415–420

    Article  Google Scholar 

  • Abbassi F, Belhadj T, Mistou S, Zghal A (2013) Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Mat Design 45:605–615

    Article  Google Scholar 

  • Agoras M, Ponte Castañeda P (2014) Anisotropic finite-strain models for porous viscoplastic materials with microstructure evolution. Int J Sol Struct 51(5):981–1002

    Article  Google Scholar 

  • Arscott FM (1964) Periodic differential equations: an introduction to Mathieu, Lame and Allied functions. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Backus G (1986) Poloidal and toroidal fields in geomagnetic field modelling. Rev Geophys 24(1):75–109

    Article  MathSciNet  Google Scholar 

  • Backus G, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Banabic D, Balan T, Comsa DS (2000) A new yield criterion for orthotropic sheet metals under plane–stress conditions. In: The 7th conference on‘TPR 2000’, Cluj Napoca, pp 217–224

    Google Scholar 

  • Banabic D, Aretz H, Comsa DS, Paraianu L (2005) An improved analytical description of orthotropy in metallic sheets. Int J Plasticity 21:493–512

    Article  MATH  Google Scholar 

  • Barlat F, Lian K (1989) Plastic behaviour and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plasticity 5:51–66

    Article  Google Scholar 

  • Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712

    Article  Google Scholar 

  • Barlat F et al (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039

    Article  MATH  Google Scholar 

  • Benzerga AA, Besson J (2001) Plastic potentials for anisotropic porous solids. Eur J Mech A-Solids 20:397–434

    Article  MATH  Google Scholar 

  • Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv App Mech 44:169–305

    Article  Google Scholar 

  • Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52

    Article  Google Scholar 

  • Burnett DS, Holford RL (1998) Multipole-based 3-D infinite elements: an ellipsoidal acoustic element and a spherical electromagnetic element. In: Geers TL (ed) IUTAM symposium on computational methods for unbounded domains. Fluid mechanics and its applications. Springer, pp 53–62

    Google Scholar 

  • Cantarella J, DeTurck D, Gluck H (2002) Vector calculus and the topology of domains in 3-space. Am Math Mon 109:409–442

    Article  MathSciNet  MATH  Google Scholar 

  • Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194

    Article  MATH  Google Scholar 

  • Chen Z, Dong X (2009) The GTN damage model based on Hill’48 anisotropic yield criterion and its application in sheet metal forming. Comput Mater Sci 44:1013–1021

    Article  Google Scholar 

  • Danas K, Castañeda PP (2009) A finite-strain model for viscoplastic anisotropic porous media: I—theory. Eur J Mech A-Solids 28:387–401

    Article  MathSciNet  MATH  Google Scholar 

  • Dobner H, Ritter S (1998) Verified computation of Lamé functions with high accuracy. Computing 60:81–89

    Google Scholar 

  • Fratini L, Lombardo A, Micari F (1996) Material characterization for the prediction of ductile fracture occurrence: an inverse approach. J Mater Proc Techn 60:311–316

    Article  Google Scholar 

  • Garajeu M, Michel J-C, Suquet P (2000) A micromechanical approach of damage in viscoplastic materials by evolution in size shape and distribution of voids. Comput Methods Appl Mech Eng 183:223–246

    Article  MATH  Google Scholar 

  • Garmier R, Barriot JP (2001) Ellipsoidal harmonic expansions of the gravitational potential: theory and application. Celestial Mech Dyn Astron 79:235–275

    Google Scholar 

  • Gologanu M, Leblond J-B, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond J-B, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Techn 116:290–297

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond JB, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum micromechanics. Springer, Vienna, pp 61–130

    Google Scholar 

  • Gologanu M (1997) Etude de quelques problemes de rupture ductile des metaux. These de Doctorat, Universite Paris 6

    Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth Part I-yield criteria and flow rules for porous ductile media. J Eng Mater Techn 99:2–15

    Article  Google Scholar 

  • Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Roy Soc Lond Proc A 193:281–297

    Article  MathSciNet  MATH  Google Scholar 

  • Kami A, Mollaei Dariani B, Sadough Vanini A, Comsa DS, Banabic D (2014a) Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing. Proc Rom Acad A 15:300–309

    Google Scholar 

  • Kami A, Mollaei Dariani B, Sadough Vanini A, Comsa DS, Banabic D (2014b) Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Proc Techn 216:472–483

    Article  Google Scholar 

  • Keralavarma SM, Benzerga AA (2008) An approximate yield criterion for anisotropic porous media. CR Mech 336:685–692

    Article  MATH  Google Scholar 

  • Keralavarma SM, Benzerga AA (2010) A constitutive model for plastically anisotropic solids with non-spherical voids. J Mech Phys Solids 58:874–901

    Article  MathSciNet  MATH  Google Scholar 

  • Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853

    Article  Google Scholar 

  • Lebedev VI, Laikov DN (1999) A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl Math 59:477–481

    Google Scholar 

  • Leblond JB, Gologanu M (2008) External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. CR Mech 336:813–819

    Article  MATH  Google Scholar 

  • Lee B, Mear M (1992) Axisymmetric deformation of power–law solids containing a dilute concentration of aligned spheroidal voids. J Mech Phys Solids 40:1805–1836

    Article  Google Scholar 

  • Lewis AS (1996) Convex analysis on the hermitian matrices. SIAM J Opt 6:164–177

    Article  MathSciNet  MATH  Google Scholar 

  • Liao KC, Pan J, Tang SC (1997) Approximate yield criteria for anisotropic porous ductile sheet metals. Mech Mater 26:213–226

    Article  Google Scholar 

  • Madou K, Leblond J-B (2012a) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036

    Article  MathSciNet  Google Scholar 

  • Madou K, Leblond J-B (2012b) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058

    Article  MathSciNet  Google Scholar 

  • McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371

    Article  Google Scholar 

  • Michel J-C, Suquet P (1992) The constitutive law of nonlinear viscous and porousmaterials. J Mech Phys Solids 40:783–812

    Article  MathSciNet  MATH  Google Scholar 

  • Monchiet V, Gruescu C, Charkaluk E, Kondo D (2006) Approximate yield criteria for anisotropic metals with prolate or oblate voids. CR Mech 334:431–439

    Article  MATH  Google Scholar 

  • Monchiet V, Cazacu O, Charkaluk E, Kondo D (2008) Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int J Plast 24:1158–1189

    Article  MATH  Google Scholar 

  • Morin L, Leblond JB, Kondo D (2015) A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids. Int J Solids Struct 77:86–101

    Article  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    Google Scholar 

  • Nicodim I, Ciobanu I, Banabic D (2013) Effect of the constitutive law on the prediction of the wall thickness distribution of square cup. In: Proceedings of the 11th international MeTM conference, Cluj-Napoca, Romania, pp 173–176

    Google Scholar 

  • Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  • Rockafellar RT (1997) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Schmitt D, Jault AD (2004) Numerical study of a rotating fluid in a spheroidal container. J Comput Phys 197:671–685

    Article  MATH  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Suquet P (1988) Discontinuities and plasticity. In Moreau J (ed) Non-smooth mechanics and applications. Springer, Vienna

    Google Scholar 

  • Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. Int J Solids Struct 48:357–373

    Article  MATH  Google Scholar 

  • Tabanov MB (1998) Normal forms of equations of wave functions in new natural ellipsoidal coordinates. AMS Trans 193:225–238

    MathSciNet  MATH  Google Scholar 

  • Talbot DRS, Willis JR (1985) Variational principles for inhomogeneous nonlinear media. IMA J Appl Math 35:39–54

    Article  MathSciNet  MATH  Google Scholar 

  • Tagata T, Matsuo M, Iwasaki H, Higashi K (2004) Forming Limit Diagram for a superplastic 5083 aluminium alloy. Mat Trans 45:2516–2520

    Article  Google Scholar 

  • TekoÄŸlu C (2014) Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio. Int J Solids Struct 51:4544–4553

    Google Scholar 

  • Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Article  Google Scholar 

  • Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  • Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151

    Article  MATH  Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Wang DA, Pan J, Liu SD (2004) An anisotropic Gurson yield criterion for porous ductile sheet metals with planar anisotropy. Int J Damage Mech 13:7–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Gologanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gologanu, M., Comsa, DS., Kami, A., Banabic, D. (2016). Modelling the Voids Growth in Ductile Fracture. In: Banabic, D. (eds) Multiscale Modelling in Sheet Metal Forming. ESAFORM Bookseries on Material Forming. Springer, Cham. https://doi.org/10.1007/978-3-319-44070-5_4

Download citation

Publish with us

Policies and ethics