Skip to main content

Oral Appliances and Athletic Performance

  • Chapter
  • First Online:
Modern Sports Dentistry

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 872 Accesses

Abstract

Athletes are constantly trying to get an “edge” on competition. As seen in the last chapter, they will turn to dangerous drugs to get such an edge over their competitors to include steroids and doping which are used to improve performance. Dentistry may have a non-pharmacologic solution to this issue. This chapter will review the history and the future of such appliances and discuss their promise and possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffstein V. Review of oral appliances for treatment of sleep-disordered breathing. Sleep Breath. 2007;11(1):1–22.

    Article  PubMed  Google Scholar 

  2. Andrews SA, Sam M, Krishman R, Ramesh M, Kunjappan SM. Surgical management of a large cleft palate in a Pierre Robin sequence: a case report and review of literature. J Pharm Bioallied Sci. 2015;7(2):S718–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roettger M. Performance enhancement and oral appliances. Compend Contin Educ Dent. 2009;30:4–8.

    PubMed  Google Scholar 

  4. Hughston JC. Prevention of dental injuries in sports. Am J Sports Med. 1980;8:61–2.

    Article  PubMed  Google Scholar 

  5. Glendor U. Aetiology and risk factors related to traumatic dental injuries - a review of literature. Dent Traumatol. 2009;25:19–31.

    Article  PubMed  Google Scholar 

  6. Heintz W. Mouth protectors: a progress report. J Am Dent Assoc. 1968;77:632–6.

    Article  PubMed  Google Scholar 

  7. Newsome PR, Tran DC, Cooke MS. The role of the mouthguard in the prevention of sports-related dental injuries: a review. Int J Paediatr Dent. 2001;11:396–404.

    Article  PubMed  Google Scholar 

  8. Ranalli DN, Demas PN. Orofacial injuries from sport preventive measures for sports medicine. Sports Med. 2002;32:409–18.

    Article  PubMed  Google Scholar 

  9. ADA Council on Access, P. A. I. R. & ADA Council on Scientific Affairs. Using mouthguards to reduce the incidence and severity of sports-related oral injuries. J Am Dent Assoc. 2006;137:1712–20.

    Article  Google Scholar 

  10. National Federation of State High Schools and Sports Medicine Advisory Committee. Position statement and recommendations for mouthguard use in sports. 2014. http://www.nfhs.org/sports-resource-content/position-statement-and-recommendations-for-mouthguard-use-in-sports/.

  11. NCAA. In: Klossner D, editor. 2013-2014 NCAA sports medicine handbook. 24th ed. Indianapolis: NCAA; 2013. p. 113–4.

    Google Scholar 

  12. de la Cruz GG, Knapik JJ, Birk MG. Evaluation of mouthguards for the prevention of orofacial injuries during United States Army basic military training. Dent Traumatol. 2008;24:86–90.

    Article  Google Scholar 

  13. Kerr I. Mouthguards for the prevention of injuries in contact sports. Sports Med. 1986;3:415–27.

    Article  PubMed  Google Scholar 

  14. Cohen A, Borish A. Mouth protector project for football players in Philadelphia high schools. J Am Dent Assoc. 1957;56:863–4.

    Google Scholar 

  15. Knapik JJ, Marshall SW, Lee RB, Darakjy SS, Jones SB, Mitchener TA, et al. Mouthguards in sport activities: history, physical properties and injury prevention effectiveness. Sports Med. 2007;37:117–44.

    Article  PubMed  Google Scholar 

  16. Boffano P, Boffano M, Gallesio C, Roccia F, Cignetti R, Piana R. Rugby athletes’ awareness and compliance in the use of mouthguards in the North West of Italy. Dent Traumatol. 2012;28:210–3.

    Article  PubMed  Google Scholar 

  17. Chapman PJ, Nasser BP. Attitudes to mouthguards and prevalence of orofacial injuries in four teams competing at the second Rugby World Cup. Br J Sports Med. 1993;27:197–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hawn KL, Visser MF, Sexton PJ. Enforcement of mouthguard use and athlete compliance in National Collegiate Athletic Association men’s collegiate ice hockey competition. J Athl Train. 2002;37:204–8.

    PubMed  PubMed Central  Google Scholar 

  19. Berry DC, Miller MG, Leow W. Attitudes of central collegiate hockey association ice hockey players toward athletic mouthguard usage. J Public Health Dent. 2005;65:71–5.

    Article  PubMed  Google Scholar 

  20. Moore M. Corrective mouth guards: performance aids or expensive placebos? Phys Sportsmed. 1981;9:127–32.

    Article  PubMed  Google Scholar 

  21. Fonder AC. The profound effect of the 1973 Nobel Prize on dentistry. J Am Acad Func Prosthodontics. 1976;1:21–9.

    Google Scholar 

  22. Garabee WF Jr. Craniomandibular orthopedics and athletic performance in the long distance runner: a three year study. Basal Facts. 1981;4:77–81.

    PubMed  Google Scholar 

  23. Kaufman RS. Case reports of TMJ repositioning to improve scoliosis and the performance of athletes. N Y State Dent J. 1980;42:206–9.

    Google Scholar 

  24. Gelb H, Mehta NR, Forgione AG. The relationship between jaw posture and muscular strength in sport dentistry: a reappraisal. Cranio. 1996;14:320–5.

    Article  PubMed  Google Scholar 

  25. Smith SD. Muscular strength correlated to jaw posture and the temporomandibular joint. N Y State Dent J. 1978;44:278–85.

    PubMed  Google Scholar 

  26. Smith SD. Adjusting mouthguards kinesiologically in professional football players. N Y State Dent J. 1982;48:298–301.

    PubMed  Google Scholar 

  27. Stenger JM. Physiologic dentistry with Notre Dame athletes. Basal Facts. 1977;2:8–18.

    PubMed  Google Scholar 

  28. Yates JW, Koen TJ, Semenick DM, et al. Effect of a mandibular orthopedic repositioning appliance on muscular strength. J Am Dent Assoc. 1984;108:331–3.

    Article  PubMed  Google Scholar 

  29. Welch MJ, Edington DM, Ritter R. Muscular strength and temporomandibular joint repositioning. J Orthop Sports Phys Ther. 1986;7:236–9.

    Article  PubMed  Google Scholar 

  30. Forgione AG, Mehta NR, McQuade CF, Westcott WL. Strength and bite, part 2: testing isometric strength using MORA set to a functional criterion. Cranio. 1992;10:13–20.

    Article  PubMed  Google Scholar 

  31. Forgione AG, Mehta NR, Westcott WL. Strength and bite, part 1: an analytical review. Cranio. 1991;9:305–15.

    Article  PubMed  Google Scholar 

  32. Jakush J. Divergent views: can dental therapy enhance athletic performance? J Am Dent Assoc. 1982;104:292–8.

    Article  PubMed  Google Scholar 

  33. Greenberg MS, Cohen SG, Springer P, Kotwick JE, Vegso JJ. Mandibular position and upper body strength: a controlled clinical trial. J Am Dent Assoc. 1981;103:576–9.

    Article  PubMed  Google Scholar 

  34. Vesgo JJ, Kotwich JE, Cohen SG, Greenberg MS. The effect of an orthopaedic intraoral mandibular appliance on upper body strength. Med Sci Sports Exerc. 1981;13:115–6.

    Google Scholar 

  35. Lee SY, Hong MH, Park MC, Choi SM. Effect of the mandibular orthopedic repositioning appliance on trunk and upper limb muscle activation during maximum isometric contraction. J Phys Ther Sci. 2013;25:1387–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shock Doctor, Inc. We give technology more bite. 2015. https://www.shockdoctor.com/technology/mouthguard. Retrieved 22 Sep 2015.

  37. Arent SM, McKenna J, Golem DL. Effects of neuromuscular dentistry-designed mouthguard on muscular endurance and anaerobic power. J Comp Physiol. 2010;7:73–9.

    Google Scholar 

  38. Dunn-Lewis C, Luk HY, Comstock BA, et al. The effects of a customized over-the-counter mouth guard on neuromuscular force and power production in trained men and women. J Strength Cond Res. 2012;26:1085–93.

    Article  PubMed  Google Scholar 

  39. Durante-Pereira DMV, del Rey-Santamaria M, Javierre-Garces C, et al. Wearability and physiological effects of custom-fitted vs self-adapted mouthguards. Dent Traumatol. 2008;24:439–42.

    Article  Google Scholar 

  40. Ebben WP, Leigh DH, Geiser CF. The effect of remote voluntary contractions on knee extensor torque. Med Sci Sports Exerc. 2008;40:1805–9.

    Article  PubMed  Google Scholar 

  41. Morales J, Busca B, Solana-Tramunt M, et al. Acute effects of jaw clenching using a customized mouthguard on anaerobic ability and ventilatory flows. Hum Mov Sci. 2015;44:270–6.

    Article  PubMed  Google Scholar 

  42. Busca B, Morales J, Solana-Tramunt M, Miro A, Garcia M. Effects of jaw clenching while wearing a customized bite-aligning mouthpiece on strength in healthy young men. J Strength Cond Res. 2015;30(4):1102–10. https://doi.org/10.1519/JSC.0000000000001192.

    Article  Google Scholar 

  43. Allen CR, Dabbs NC, Zachary CS, et al. The acute effect of a commercial bite-aligning mouthpiece on strength and power in recreationally trained men. J Strength Cond Res. 2014;28:499–503.

    Article  PubMed  Google Scholar 

  44. Golem D, Arent SM. Effects of jaw-repositioning mouthguards on multiple aspects of physical performance. Rutgers: Rutgers University; 2012.

    Google Scholar 

  45. Drum SN, Swisher A, Buchanan CA, et al. Effects of a custom bite-aligning mouth guard on performance in college football players. J Strength Cond Res. 2015;30(5):1409–15. https://doi.org/10.1519/JSC.0000000000001235.

    Article  Google Scholar 

  46. Bailey SP, Willauer TJ, Balilionis G, Wilson LE, Salley JT, Bailey EK, et al. Effects of an over-the-counter vented mouthguard on cardiorespiratory responses to exercise and physical agility. J Strength Cond Res. 2015;29:678–84.

    Article  PubMed  Google Scholar 

  47. Bourdin M, Brunet-Patru I, Hager PE, Allard Y, Hager JP, Lacour JR, et al. Influence of maxillary mouthguards on physiological parameters. Med Sci Sports Exerc. 2006;38:1500–4.

    Article  PubMed  Google Scholar 

  48. Garner DP. Effects of various mouthpieces on respiratory physiology during steady state exercise in college-aged subjects. Gen Dent. 2015;63:30–4.

    PubMed  Google Scholar 

  49. Garner DP, Dudgeon WD, McDivitt E. The effects of mouthpiece use on cortisol levels during an intense bout of resistance exercise. J Strength Cond Res. 2011;25:2866–71.

    Article  PubMed  Google Scholar 

  50. Garner DP, Dudgeon WD, Scheett TP, et al. The effects of mouthpiece use on gas exchange parameters during steady-state exercise in college-aged men and women. J Am Dent Assoc. 2011;142:1041–7.

    Article  PubMed  Google Scholar 

  51. Garner DP, McDivitt E. Effects of mouthpiece use on airway openings and lactate levels in healthy college males. Compend Contin Educ Dent. 2009;30(2):9–13.

    PubMed  Google Scholar 

  52. Garner DP, Miskimin J. Effects of mouthpiece use on auditory and visual reaction time in college males and females. Compend Contin Educ Dent. 2009;30(2):14–7.

    PubMed  Google Scholar 

  53. Gebauer DP, Williamson RA, Wallman KE, Dawson BT. The effect of mouthguard design on respiratory function in athletes. Clin J Sport Med. 2011;21:95–100.

    Article  PubMed  Google Scholar 

  54. Rapisura KP, Coburn JW, Borwn LE, Kersey RD. Physiological variables and mouthguard use in women during exercise. J Strength Cond Res. 2010;24:1263–8.

    Article  PubMed  Google Scholar 

  55. von Arx T, Flury R, Tschan J, Buergin W, Geiser T. Exercise capacity in athletes with mouthguards. Int J Sports Med. 2008;29:435–8.

    Article  Google Scholar 

  56. Francis KT, Brasher J. Physiological effects of wearing mouthguards. Br J Sports Med. 1991;25:227–31.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dudgeon, WD, Buchanan, LA, Strickland, AE, Scheett, TP, and Garner, DP, Mouthpiece use during heavy resistance exercise affects serum cortisol and lactate. Cogent Med 2017;4:1403728.

    Google Scholar 

  58. Garner DP, McDivitt EJ. The effects of mouthpiece use on salivary cortisol and lactate levels during exercise. Med Sci Sports Exerc. 2009;41:S448.

    Article  Google Scholar 

  59. Garner DP, McDivitt EJ. Effects of mouthpiece use on lactate and cortisol levels during and after 30 minutes of treadmill running. Open Access J Sci Technol. 2015;3:101148. https://doi.org/10.11131/2015/101148.

    Article  Google Scholar 

  60. Hori N, Yuyama N, Tamura K. Biting suppresses stress-induced expression of corticotropin-releasing factor (CRF) in the rat hypothalamus. J Dent Res. 2004;83:124–8.

    Article  PubMed  Google Scholar 

  61. Sasaguri K, Kikuchi M, Hori N, et al. Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus. Neurosci Lett. 2005;383:160–4.

    Article  PubMed  Google Scholar 

  62. Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol. 2004;29:527–43.

    Article  PubMed  Google Scholar 

  63. McGuigan MR, Egan AD, Foster C. Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. J Sports Sci Med. 2004;3:8–15.

    PubMed  PubMed Central  Google Scholar 

  64. Chrousos GP. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 2000;24:S50–5.

    Article  PubMed  Google Scholar 

  65. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35:339–61.

    Article  PubMed  Google Scholar 

  66. Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol. 2014;116:291–301.

    Article  PubMed  Google Scholar 

  67. Hiyama S, Iwamoto S, Ono T, Ishiwata Y, Kurodo T. Genioglossus muscle activity during rhythmic open-close jaw movements. J Oral Rehabil. 2000;27:664–70.

    Article  PubMed  Google Scholar 

  68. Mann EA, Burnett T, Cornell S, Ludlow CL. The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway. Laryngoscope. 2002;112:351–6.

    Article  PubMed  Google Scholar 

  69. Miller AJ. Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Rev Oral Biol Med. 2002;13:409–25.

    Article  PubMed  Google Scholar 

  70. Remmers JE. Wagging the tongue and guarding the airway: reflex control of the genioglossus. Am J Respir Crit Care Med. 2010;164:2013–4.

    Article  Google Scholar 

  71. Saboisky JP, Butler JE, Fogel RB, Taylor JL, Trinder JA, White DP, et al. Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol. 2006;95:2213–21.

    Article  PubMed  Google Scholar 

  72. Saito H, Itoh I. Three-dimensional architecture of the intrinsic tongue muscles, particularly the longitudinal muscle, by the chemical-maceration method. Anat Sci Int. 2003;78:168–76.

    Article  PubMed  Google Scholar 

  73. Eastwood PR, Allison GT, Shepherd KL, Szollosi I, Hillman DR. Heterogeneous activity of the human genioglossus muscle assessed by multiple bipolar fine-wire electrodes. J Appl Physiol. 2003;94:1849–58.

    Article  PubMed  Google Scholar 

  74. Fogel RB, Malhotra A, Pillar G, Edwards J, Beauregard J, Shea SA, et al. Genioglossal activation in patients with obstructive sleep apnea versus control subjects. Am J Respir Crit Care Med. 2001;164:2025–30.

    Article  PubMed  Google Scholar 

  75. Gale DJ, Sawyer RH, Woodcock A, Stone P, Thompson R, O’Brien K. Do oral appliances enlarge the airway in patients with obstructive sleep apnoea? A prospective computerized tomographic study. Eur J Orthod. 2000;22:159–68.

    Article  PubMed  Google Scholar 

  76. Gao X, Otsuka R, Ono R, Honda E, Saski T, Kuroda T. Effect of titrated mandibular advancement and jaw opening in nonapneic men: a magnetic resonance imaging and cephalometric study. Am J Orthod Dentofac Orthop. 2004;125:191–9.

    Article  Google Scholar 

  77. Lim J, Lasserson TJ, Fleetham J, Wright J. Oral appliances for obstructive sleep apnoea. Cochrane Database Syst Rev. 2006;4:CD004435.

    Google Scholar 

  78. Ryan CF, Love LL, Peat D, Fleetham JA, Lowe AA. Mandibular advancement oral appliance therapy for obstructive sleep apnoea: effect on awake calibre of the velopharynx. Thorax. 1999;54:972–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao X, Liu Y, Gao Y. Three-dimensional upper-airway changes associated with various amounts of mandibular advancement in awake apnea patients. Am J Orthod Dentofac Orthop. 2008;133:661–8.

    Article  Google Scholar 

  80. Schmidt JE, Carlson CR, Usery AR, Quevedo AS. Effects of tongue position on mandibular muscle activity and heart rate function. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:881–8.

    Article  PubMed  Google Scholar 

  81. Takahashi S, Kuribayashi G, Ono T, Ishiwata Y, Kurodo T. Modulation of masticatory muscle activity by tongue position. Angle Orthod. 2005;75:35–9.

    PubMed  Google Scholar 

  82. Gerstner GE, Goldberg LJ. Genioglossus EMG activity during rhythmic jaw movements in anesthetized guinea pig. Brain Res. 1991;562:79–84.

    Article  PubMed  Google Scholar 

  83. Ishiwata Y, Hiyama S, Igarashi K, Ono T, Kurodo T. Human jaw-tongue reflex as revealed by intraoral surface recording. J Oral Rehabil. 1997;24:857–62.

    Article  PubMed  Google Scholar 

  84. Liu ZJ, Masuda Y, Inque T, Fuchihata H, Sumida A, Takada K, et al. Coordination of cortically induced rhythmic jaw and tongue movements in the rabbit. J Neurophysiol. 1993;69:569–84.

    Article  PubMed  Google Scholar 

  85. Liu ZJ, Shcherbatyy V, Kayalioglu M, Seifi A. Internal kinematics of the tongue in relation to muscle activity and jaw movement in the pig. J Oral Rehabil. 2009;36:660–74.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Valdes C, Astaburuaga F, Falace D, Ramirez V, Manns A. Effect of tongue position on masseter and temporalis electromyographic activity during swallowing and maximal voluntary clenching: a cross-sectional study. J Oral Rehabil. 2014;41:881–9.

    Article  PubMed  Google Scholar 

  87. Weber CM, Smith A. Reflex responses in human jaw, lip, and tongue muscles elicited by mechanical stimulation. J Speech Hear Res. 1987;30:70–9.

    Article  PubMed  Google Scholar 

  88. Lowe AA, Sessle BJ. Tongue activity during respiration, jaw opening, and swallowing in the cat. Can J Physiol Parmacol. 1973;51:1009–11.

    Article  Google Scholar 

  89. Takada K, Yashiro K, Sorihashi Y, Morimoto T, Sakuda M. Tongue, jaw, and lip muscle activity and jaw movement during experimental chewing efforts in man. J Dent Res. 1996;75:1598–606.

    Article  PubMed  Google Scholar 

  90. Johal A, Gill G, Ferman A, McLaughlin K. The effect of mandibular advancement appliances on awake upper airway and masticatory muscle activity in patients with obstructive sleep apnoea. Clin Physiol Funct Imaging. 2007;27:47–53.

    Article  PubMed  Google Scholar 

  91. Kyung SH, Park YC, Pae EK. Obstructive sleep apnea patients with the oral appliance experience pharyngeal size and shape changes in three dimensions. Angle Orthod. 2005;75:15–22.

    PubMed  Google Scholar 

  92. Brouillette RT, Thach BT. A neuromuscular mechanism maintaining extrathoracic airway patency. J Appl Physiol. 1979;46:772–9.

    Article  PubMed  Google Scholar 

  93. Lowe AA. The neural regulation of tongue movements. Prog Neurobiol. 1980;15:295–344.

    Article  PubMed  Google Scholar 

  94. Walls CE, Laine CM, Kidder IJ, Bailey EF. Human hypoglossal motor unit activities in exercise. J Physiol. 2013;591:3579–90.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roark AL, Glaros AG, O'Mahony AM. Effects of interocclusal appliances on EMG activity during parafunctional tooth contact. J Oral Rehabil. 2003;30:573–7.

    Article  PubMed  Google Scholar 

  96. Igarashi K. Neurophysiological mechanism of jaw-tongue reflex in man. J Stomatol Soc. 1996;63:108–21.

    Article  Google Scholar 

  97. Saboisky JP, Luu BL, Butler JE, Gandevia SC. Effects of tongue position and lung volume on voluntary maximal tongue protrusion force in humans. Respir Physiol Neurobiol. 2015;206:61–6.

    Article  PubMed  Google Scholar 

  98. Hasegawa Y, Ono T, Hori K, et al. Influence of human jaw movement on cerebral blood flow. J Dent Res. 2007;86:64–8.

    Article  PubMed  Google Scholar 

  99. Shibusawa M, Takeda T, Nakajima K, et al. Functional near infrared spectroscopy study on primary motor and sensory cortex response to clenching. Neurosci Lett. 2009;449:98–102.

    Article  PubMed  Google Scholar 

  100. Tahara Y, Sakurai K, Ando T. Influence of chewing and clenching on salivary cortisol levels as an indicator of stress. J Prosthodont. 2007;16:129–35.

    Article  PubMed  Google Scholar 

  101. Kaneko M, Hori N, Yuyama N, et al. Biting suppresses Fos expression in various regions of the rat brain: further evidence that the masticatory organ functions to manage stress. Stomatologic. 2004;101:151–6.

    Google Scholar 

  102. Mascaro MB, Prosdocimi FC, Bittencourt JC, et al. Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats. Eur J Oral Sci. 2009;117:676–84.

    Article  PubMed  Google Scholar 

  103. Iida T, Kato M, Komiyama O, et al. Comparison of cerebral activity during teeth clenching and fist clenching: a functional magnetic resonance imaging study. Eur J Oral Sci. 2010;118:635–41.

    Article  PubMed  Google Scholar 

  104. Miyake S, Takahashi S, Yoshino F, Todoki K, Sasaguri K, Sato S, et al. Nitric oxide levels in rat hypothalamus are increased by restraint stress and decreased by biting. Redox Rep. 2008;13:31–9.

    Article  PubMed  Google Scholar 

  105. Momose E, Niskikawa J, Watanabe T, et al. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with O-labelled water and magnetic resonance imaging. Arch Oral Biol. 1997;42:57–61.

    Article  PubMed  Google Scholar 

  106. Tamura T, Kanayama T, Yoshida S, Kawasaki T. Analysis of brain activity during clenching by fMRI. J Oral Rehabil. 2002;29:467–72.

    Article  PubMed  Google Scholar 

  107. Iida T, Sakayanagi M, Svensson P, et al. Influence of periodontal afferent inputs for human cerebral blood oxygenation during jaw movements. Exp Brain Res. 2012;216:375–84.

    Article  PubMed  Google Scholar 

  108. Qin S, Hermans EJ, van Marle HJF, et al. Acute psychological stress reduces working memory-related activing in the dorsolateral prefrontal cortex. Biol Psychiatry. 2009;66:25–32.

    Article  PubMed  Google Scholar 

  109. Heit T, Derkson C, Bierkos J, Saqqur M. The effect of the physiological rest position of the mandible on cerebral blood flow and physical balance: an observational study. Cranio. 2015;33:195–205.

    Article  PubMed  Google Scholar 

  110. Otsuka T, Hayashi Y, Sasaguri K, Kawata T. Correlation of hypothalamic activation with malocclusion: an fMRI study. Biomed Res. 2015;26:203–6.

    Google Scholar 

  111. Ebben WP. A brief review of concurrent activation potentiation: theoretical and practical constructs. J Strength Cond Res. 2006;20:985–91.

    PubMed  Google Scholar 

  112. Miyahara T, Hagiya N, Ohyama T, Nakamura Y. Modulation of human soleus H reflex in association with voluntary clenching of the teeth. J Neurophysiol. 1996;76:2033–41.

    Article  PubMed  Google Scholar 

  113. Takada Y, Miyahara T, Tanaka T, Ohyama T, Makamura Y. Modulation of H reflex of pretibial muscles and reciprocal Ia inhibition of soleus muscle during voluntary teeth clenching in humans. J Neurophysiol. 2000;83:2063–70.

    Article  PubMed  Google Scholar 

  114. Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78:1336–44.

    Article  PubMed  Google Scholar 

  115. Murakami S, Maeda Y, Ghanem A, Uchiyama Y, Kreilborg S. Influence of mouthguard on temporomandibular joint. Scand J Med Sports. 2008;18:591–5.

    Article  Google Scholar 

  116. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garrod R, Dallimore K, Cook J, Davies V, Quade K. An evaluation of the acute impact of pursed lips breathing on walking distance in nonspontaneous pursed lips breathing chronic obstructive pulmonary disease patients. Chron Respir Dis. 2005;2:67–72.

    Article  PubMed  Google Scholar 

  118. Ramos EMC, Vadnerlei LCM, Ramos D, Teizeira LM, Pitta F, Veloso M. Influence of pursed-lip breathing on heart rate variability and cardiorespiratory parameters in subjects with chronic obstructive pulmonary disease (COPD). Rev Bras Fisioter. 2009;13:288–93.

    Article  Google Scholar 

  119. Pae A, Yoo R, Noh K, Pake J, Kwon K. The effects of mouthguards on the athletic ability of professional golfers. Dent Traumatol. 2013;29:47–51.

    Article  PubMed  Google Scholar 

  120. Smith SD. Atlas of temporomandibular orthopedics: dentistry in sports medicine. Philadelphia: Philadelphia College of Osteopathic Medicine Press; 1981.

    Google Scholar 

  121. Gould TE, Piland SG, Shin J, Hoyle CE, Nazarenko S. Characterization of mouthguard materials: physical and mechanical properties of commercialized products. Dent Mater. 2009;25:771–80.

    Article  PubMed  Google Scholar 

  122. Plastics International. Hardness scale: durometer comparisons of materials. 2015. http://www.plasticsintl.com/polyhardness.htm.

  123. Acevedo EO, Kraemer RR, Kamimori GH, Durand RJ, Johnson LG, Castracane VD. Stress hormones, effort sense, and perceptions of stress during incremental exercise: an exploratory investigation. J Strength Cond Res. 2007;21:283–8.

    Article  PubMed  Google Scholar 

  124. Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise. 6th ed. Champaign: Human Kinetics; 2015.

    Google Scholar 

  125. Chakfa AM, Mehta NR, Forgione AG, Al-Badawi EA, Lobo SL, Zawawi KH. The effect of stepwise increases in vertical dimension of occlusion on isometric strength of cervical flexors and deltoid muscles in nonsymptomatic females. Cranio. 2002;20:264–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dena P. Garner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garner, D.P. (2018). Oral Appliances and Athletic Performance. In: Roettger, M. (eds) Modern Sports Dentistry. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-44416-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44416-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44414-7

  • Online ISBN: 978-3-319-44416-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics