Skip to main content

Physiology of the Normal and Failing Heart

  • Chapter
  • First Online:
Congestive Heart Failure and Cardiac Transplantation

Abstract

The muscularized pump that is the adult human heart distributes more than 1900 gallons of blood daily to every organ in the body. The coordinated activity of its chambers, vessels, and valves enables immediate response to constant physiological demands and maintenance of homeostasis. This chapter outlines the physiological response of the normal adult human heart and highlights the adaptations of the failing heart in an attempt to preserve cardiac output. It reviews the anatomy of the heart in detail, including the components of blood supply; innervation and the impact of decreased cardiac output in heart failure patients; the role of cardiomyocytes, endothelial cells, smooth muscle, fibroblasts, and extracellular matrix; the role and importance of myoglobin in oxygen transport and generation of ATP; the physiology behind and regulation of contraction and relaxation; and other key factors. Knowing the structure and functioning of both a healthy and a failing human heart is fundamental to understanding how an injury or infarct impacts the heart’s operation and how to best develop a treatment plan. When treating patients with heart failure, this knowledge enables prompt implementation of conventional and emerging therapies that promote reverse remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey W. Exercitatio anatomica de motu cordis et sanguinis in animalibus. Frankfurt; 1628.

    Google Scholar 

  2. Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol. 1883;4(1):29–42.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968;195(2):451–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirchberber MA, Tada M, Katz AM. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. Recent Adv Stud Cardiac Struct Metab. 1975;5:103–15.

    CAS  PubMed  Google Scholar 

  5. Tada M, Inui M. Regulation of calcium transport by the ATPase-phospholamban system. J Mol Cell Cardiol. 1983;15(9):565–75.

    Article  CAS  PubMed  Google Scholar 

  6. Wiggers CJ. Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Am J Physiol. 1921;56:415–38.

    Google Scholar 

  7. Fick A. Ueber die Messung des Blutquantums in den Herzventrikeln. Ges. Würzburg; 1870. SB Phys-Med.

    Google Scholar 

  8. Cournand A. Measurement of the cardiac output in man using the right heart catherization. Description of technique, discussion of validity and of place in the study of the circulation. Federation Proc. 1945;4:207–12.

    Google Scholar 

  9. Frank O. Zur Dynamik des Herzmuskels. Z Biol. 1895;32:370–437.

    Google Scholar 

  10. Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol. 1914;48(6):465–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9(5):706–18.

    Article  CAS  PubMed  Google Scholar 

  12. Sonnenblick EH. Implications of muscle mechanics in the heart. Fed Proc. 1962;21:975–90.

    CAS  PubMed  Google Scholar 

  13. Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol. 1972;34:13–46.

    Article  CAS  PubMed  Google Scholar 

  14. Braunwald E. Eugene Braunwald: escaping death and prolonging lives [part 1] Interview by Ruth Williams. Circ Res. 2010;106(11):1668–71.

    Article  PubMed  Google Scholar 

  15. Opie LH. Heart physiology, from cell to circulation. 4th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2004.

    Google Scholar 

  16. Anderson RH, Razavi R, Taylor AM. Cardiac anatomy revisited. J Anat. 2004;205(3):159–77.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conti CR. The Netter collection of medical illustrations: cardiovascular system. 2nd ed. Philadelphia, PA: Elsevier; 2014.

    Google Scholar 

  18. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30(2):167–87.

    Article  PubMed  Google Scholar 

  19. Loukas M, Sharma A, Blaak C, Sorenson E, Mian A. The clinical anatomy of the coronary arteries. J Cardiovasc Transl Res. 2013;6(2):197–207.

    Article  PubMed  Google Scholar 

  20. Benjamin MM, Smith RL, Grayburn PA. Ischemic and functional mitral regurgitation in heart failure: natural history and treatment. Curr Cardiol Rep. 2014;16(8):517.

    Article  PubMed  Google Scholar 

  21. Opie LH. Mechanisms of cardiac contraction and relaxation. In: Libby P, Bonow RO, Mann DL, Zipes DP, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. Chapter 21. 8th ed. Philadelphia, PA: Saunders; 2008. p. 509–39.

    Google Scholar 

  22. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    Article  CAS  PubMed  Google Scholar 

  23. Granger HJ. Cardiovascular physiology in the twentieth century: great strides and missed opportunities. Am J Physiol. 1998;275(6 Pt 2):H1925–36.

    CAS  PubMed  Google Scholar 

  24. Katz AM. Chapter 1, Ultrastructure of the working myocardial cell Structure of the heart and cardiac muscle. In: Physiology of the heart. 5th ed. Philadelphia, PA: Lippincott Williams and Wilkins, a Wolters Kluwer business; 2011. p. 3–32.

    Google Scholar 

  25. Grange RW, Meeson A, Chin E, Lau KS, Stull JT, Shelton JM, Williams RS, Garry DJ. Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am J Physiol Cell Physiol. 2001;281(5):C1487–94.

    CAS  PubMed  Google Scholar 

  26. Kendrew JC, Parrish RG, Marrack JR, Orlans ES. The species specificity of myoglobin. Nature. 1954;174(4438):946–9.

    Article  CAS  PubMed  Google Scholar 

  27. Garry DJ, Kanatous SB, Mammen PP. Emerging roles for myoglobin in the heart. Trends Cardiovasc Med. 2003;13(3):111–6.

    Article  CAS  PubMed  Google Scholar 

  28. Perkoff GT, Tyler FH. Estimation and physical properties of myoglobin in various species. Metabolism. 1958;7(6):751–9.

    CAS  PubMed  Google Scholar 

  29. Wittenberg BA, Wittenberg JB, Caldwell PR. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem. 1975;250(23):9038–43.

    CAS  PubMed  Google Scholar 

  30. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958;181(4610):662–6.

    Article  CAS  PubMed  Google Scholar 

  31. Garry DJ, Bassel-Duby RS, Richardson JA, Grayson J, Neufer PD, Williams RS. Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Dev Genet. 1996;19(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  32. Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS. Mice without myoglobin. Nature. 1998;395(6705):905–8.

    Article  CAS  PubMed  Google Scholar 

  33. Meeson AP, Radford N, Shelton JM, Mammen PP, DiMaio JM, Hutcheson K, Kong Y, Elterman J, Williams RS, Garry DJ. Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ Res. 2001;88(7):713–20.

    Article  CAS  PubMed  Google Scholar 

  34. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993;261(5117):58–65.

    Article  CAS  PubMed  Google Scholar 

  35. Ginsburg KS, Weber CR, Bers DM. Cardiac Na+-Ca2+ exchanger: dynamics of Ca2+-dependent activation and deactivation in intact myocytes. J Physiol. 2013;591(8):2067–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bers DM, Shannon TR. Calcium movements inside the sarcoplasmic reticulum of cardiac myocytes. J Mol Cell Cardiol. 2013;58:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tada M, Katz AM. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol. 1982;44:401–23.

    Article  CAS  PubMed  Google Scholar 

  38. Picht E, Zima AV, Shannon TR, Duncan AM, Blatter LA, Bers DM. Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res. 2011;108(7):847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res. 2008;103(8):e105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suga H, Hisano R, Hirata S, Hayashi T, Ninomiya I. Mechanism of higher oxygen consumption rate: pressure-loaded vs. volume-loaded heart. Am J Physiol. 1982;242(6):H942–8.

    CAS  PubMed  Google Scholar 

  41. Ross Jr J, Braunwald E. Studies on Starling’s law of the heart. IX. The effects of impeding venous return on performance of the normal and failing human left ventricle. Circulation. 1964;30:719–27.

    Article  PubMed  Google Scholar 

  42. Corsi C, Lang RM, Veronesi F, Weinert L, Caiani EG, MacEneaney P, Lamberti C, Mor-Avi V. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation. 2005;112(8):1161–70.

    Article  PubMed  Google Scholar 

  43. Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M, Gillebert TC, Asklepios Investigators. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension. 2013;61(2):296–303.

    Article  CAS  PubMed  Google Scholar 

  44. Wiggers C. Modern aspects of the circulation in health and disease. Philadelphia, PA: Lea & Febiger; 1915.

    Google Scholar 

  45. Ross Jr J, Franklin D, Sasayama S. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur J Cardiol. 1976;4(Suppl):77–86.

    PubMed  Google Scholar 

  46. Katz AM. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation. 2002;106(23):2986–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Garry MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alraies, M.C., Garry, D.J., Garry, M.G. (2017). Physiology of the Normal and Failing Heart. In: Garry, D., Wilson, R., Vlodaver, Z. (eds) Congestive Heart Failure and Cardiac Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-44577-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44577-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44575-5

  • Online ISBN: 978-3-319-44577-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics