Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1627 Accesses

Abstract

The thesis title reflects a number of themes, i.e. intelligent system, embedded system, condition monitoring and industrial robot, and previous and recent research in each theme needs to be studied thoroughly; however, there has not been much researches in the field of robot condition monitoring. Thus the purpose of this chapter is to evaluate the condition monitoring methods that have been developed for different machinery with a view to applying the most appropriate one to robots and collectively helps to establish if there is a gap in the area of industrial robot condition monitoring. This chapter will give and describe in its first two sections the necessary background information about the various condition monitoring approaches and techniques. Statistical and Artificial intelligence techniques, such as artificial neural networks (ANN), fuzzy logic system (FLS), genetic algorithm (GA), and support vector machine (SVM), which can be applied to address the issues of fault detection and diagnosis, will also be reviewed. Then, the principle of embedded systems and their application in condition monitoring is reviewed in the third section. The last section of this chapter will discuss the work done in robotics health monitoring and finally the research gap is addressed in the summary section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul, S., & Liu, G. (2008). Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing. In Proceedings—IEEE International Conference on Robotics and Automation (pp. 3520–3526).

    Google Scholar 

  • Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2008) Applied real time bearing fault diagnosis based on vibration and current analysis. 258–262.

    Google Scholar 

  • Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.

    Article  Google Scholar 

  • Arvallo, A. V., & Tesar, D. (2000). Condition-based maintenance of actuator systems using a model-based approach. Ph.D Thesis, The University of Texas at Austin.

    Google Scholar 

  • Bae, H., Chun, S. P., & Kim, S. (2006). Predictive fault detection and diagnosis of nuclear power plant using the two-step neural network models.

    Google Scholar 

  • Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.

    Article  Google Scholar 

  • Baydar, N., Chen, Q., Ball, A., & Kruger, U. (2001). Detection of incipient tooth defect in helical gears using multivariate statistics. Mechanical Systems and Signal Processing, 15, 303–321.

    Article  Google Scholar 

  • Bicker, R., Daadbin, A., & Rosinski, J. (1989). The monitoring of vibration in industrial robots. In ASME 12th Biennial Conference on Mechanical Vibration and Noise.

    Google Scholar 

  • Bittencourt, A. C., Axelsson, P., Jung, Y., & Brogardh, T. (2011). Modeling and identification of wear in a robot joint under temperature uncertainties. Automatic Control.

    Google Scholar 

  • Bogiatzidis, I. X., Safacas, A. N., & Mitronikas, E. D. (2013). Detection of backlash phenomena appearing in a single cement kiln drive using the current and the electromagnetic torque signature. IEEE Transactions on Industrial Electronics, 60, 3441–3453.

    Article  Google Scholar 

  • Brambilla, D., Capisani, L. M., Ferrara, A., & Pisu, P. (2008). Actuators and sensors fault detection for robot manipulators via second order sliding mode observers. In 2008 International Workshop on Variable Structure Systems (pp. 61–66). IEEE.

    Google Scholar 

  • Butler, S. (2012). Prognostic algorithms for condition monitoring and remaining useful life estimation. Ph.D Thesis, National University of Ireland, Maynooth.

    Google Scholar 

  • Cabal-Yepez, E., Garcia-Ramirez, A. G., Romero-Troncoso, R. J., Garcia-Perez, A., & Osornio-Rios, R. A. (2013). Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT. IEEE Transactions on Industrial Informatics, 9, 760–771.

    Article  Google Scholar 

  • Caccavale, F., Cilibrizzi, P., Pierri, F., & Villani, L. (2009). Actuators fault diagnosis for robot manipulators with uncertain model. Control Engineering Practice, 17, 146–157.

    Article  Google Scholar 

  • Capisani, L. M., Ferrara, A., Ferreira, A., & Fridman, L. (2010). Higher order sliding mode observers for actuator faults diagnosis in robot manipulators. In 2010 IEEE International Symposium on Industrial Electronics (pp. 2103–2108). IEEE.

    Google Scholar 

  • Chandroth, G. O., Sharkey, A. J. C., & Sharkey, N. E. (1999). Cylinder pressures and vibration in internal combustion engine condition monitoring. Comadem 99. Sunderland, UK.

    Google Scholar 

  • Chen, C. Y., Ke, M. D., & Kuo, C. D. (2009b). Continuous wavelet transformation the wavelet implemented on a DSP chip for EEG monitoring. In 2009 1st International Conference on Information Science and Engineering (pp. 3633–3636). ICISE 2009.

    Google Scholar 

  • Chiang, D. Y., & Lai, W. Y. (1999). Structural damage detection using the simulated evolution method. AIAA Journal, 37, 1331–1333.

    Article  Google Scholar 

  • Claudiu, B., Mehdi, C., Alain, G., & Jean-Yves, K. (2012). Dynamic behavior analysis for a six axis industrial machining robot. Advanced Materials Research.

    Google Scholar 

  • Collins, C. M. (2000). An evaluation of embedded system behavior using full-system software emulation. Maryland: Master of Science.

    Google Scholar 

  • Cotton, N. J., Wilamowski, B. M., & Dündar, G. (2008). A neural network implementation on an inexpensive eight bit microcontroller. In 12th International Conference on Intelligent Engineering Systems—Proceedings (pp. 109–114), INES 2008.

    Google Scholar 

  • Datta, A., Mavroidis, C., Krishnasamy, J., & Hosek, M. (2007). Neural netowrk based fault diagnostics of industrial robots using wavelt multi-resolution analysis. In American Control Conference (1858–1863), USA.

    Google Scholar 

  • Di Nuovo, A. G., & Catania, V. (2007). Genetic tuning of fuzzy rule deep structures for efficient knowledge extraction from medical data, 5053–5058.

    Google Scholar 

  • Ding, S. X. (2008). Model-based fault diagnosis techniques. Germany: Springer.

    Google Scholar 

  • Dreyfus, G. (2005). Neural networks, methodology and applications. London: Springer.

    MATH  Google Scholar 

  • Ebersbach, S., Peng, Z., & Kessissoglou, N. J. (2006). The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques. Wear, 260, 16–24.

    Article  Google Scholar 

  • Elnady, M. E., Sinha, J. K., & Oyadiji, S. O. (2011). On-shaft wireless vibration measurement for condition monitoring of rotating machine. In International Conference on Vibration Problems. Prague.

    Google Scholar 

  • Feng, G. J., Gu, J., Zhen, D., Aliwan, M., Gu, F. S., & Ball, A. D. (2015). Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis. International Journal of Automation and Computing, 12, 14–24.

    Article  Google Scholar 

  • Filaretov, V. F., Vukobratovic, M. K., & Zhirabok, A. N. (1999). Observer-based fault diagnosis in manipulation robots. Mechatronics, 9, 929–939.

    Article  Google Scholar 

  • Fulcher, J. (2006). Advances in applied artificial intelligence. Hershey: Idea Group Publishing.

    Google Scholar 

  • Gallova, S. (2010). Fuzzy parameters and cutting forces optimization via genetic algorithm approach. London: Springer.

    Google Scholar 

  • Gani, A., & Salami, M. J. E. (2004). Vibration faults simulation system (VFSS): A lab equipment to aid teaching of mechatronics courses. International Journal of Engineering Education, 20, 61–69.

    Google Scholar 

  • García-Escudero, L. A., Duque-Perez, O., Morinigo-Sotelo, D., & Perez-Alonso, M. (2011). Robust condition monitoring for early detection of broken rotor bars in induction motors. Expert Systems with Applications, 38, 2653–2660.

    Article  Google Scholar 

  • Gelman, L., Jennions, I., & Petrunin, I. (2011) Detection of chipped tooth in gears by the novel residual technology. In 8th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 2011 (pp. 966–977). CM 2011/MFPT 2011.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Gonçalves, L. F., Bosa, J. L., Henriques, R. V. B., & Lubaszewski, M. S. (2009). Design of an embedded system for the proactive maintenance of electrical valves.

    Google Scholar 

  • Halme, J. (2006). Condition monitoring of a material handling industrial robot. In 19th International Congress, Lulea, Sweden.

    Google Scholar 

  • Heng, A. S. Y. (2009). Intelligent prognostics of machinery health utilising suspended condition monitoring data. Ph.D, Queensland University of Technology.

    Google Scholar 

  • Huang, W., Niu, P., & Lu, X. (2014). Spur bevel gearbox fault diagnosis using wavelet packet transform for feature extraction. Advances in Intelligent Systems and Computing.

    Google Scholar 

  • Jack, L. B., & Nandi, A. K. (2000). Genetic algorithms for feature selection in machine condition monitoring with vibration signals. IEE Proceedings: Vision, Image and Signal Processing, 147, 205–212.

    Article  Google Scholar 

  • Janier, J. B., & Fazrin Zaim Zaharia, M. (2011). Condition monitoring system for induction motor using fuzzy logic tool, 3–7.

    Google Scholar 

  • Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20, 1483–1510.

    Article  Google Scholar 

  • Jiang, J., & Zhang, B. (2012). Rolling element bearing vibration modeling with applications to health monitoring. JVC/Journal of Vibration and Control, 18, 1768–1776.

    Article  Google Scholar 

  • Kar, C., & Mohanty, A. R. (2006). Monitoring gear vibrations through motor current signature analysis and wavelet transform. Mechanical Systems and Signal Processing, 20, 158–187.

    Article  Google Scholar 

  • Kia, S. H., Henao, H., & Capolino, G. A. (2010). Torsional vibration assessment using induction machine electromagnetic torque estimation. IEEE Transactions on Industrial Electronics, 57, 209–219.

    Article  Google Scholar 

  • Kim, H.-E. (2010). Machine prognostics based on health state probability estimation. Ph.D Thesis, Queensland University of Technology.

    Google Scholar 

  • Kim, E. Y., Tan, A. C. C., Mathew, J., & Yang, B. S. (2008). Condition monitoring of low speed bearings: A comparative study of the ultrasound technique versus vibration measurements. Australian Journal of Mechanical Engineering, 5, 177–189.

    Google Scholar 

  • Kisić, E., Petrović, V., Jakovljević, M., & Đurović, Ž. (2013). Fault detection in electric power systems based on control charts. Serbian Journal of Electrical Engineering, 10, 73–90.

    Article  Google Scholar 

  • Kudva, J. N., Munir, N., & Tan, P. W. (1992). Damage detection in smart structures using neural networks and finite-element analyses. Smart Materials and Structures, 1, 108–112.

    Article  Google Scholar 

  • Lei, Y., Li, N., Lin, J., & He, Z. (2015). Two new features for condition monitoring and fault diagnosis of planetary gearboxes. JVC/Journal of Vibration and Control, 21, 755–764.

    Article  Google Scholar 

  • Lian, K. Y., Hsiao, S. J., & Sung, W. T. (2013). Mobile monitoring and embedded control system for factory environment. Sensors (Switzerland), 13, 17379–17413.

    Article  Google Scholar 

  • Liang, X., Zuo, M. J., & Hoseini, M. R. (2015). Vibration signal modeling of a planetary gear set for tooth crack detection. Engineering Failure Analysis, 48, 185–200.

    Article  Google Scholar 

  • Liguo, Z., Yutian, W., Sheng, Z., & Guangpu, H. (2009). The fault diagnosis of machine based on modal analysis. In 2009 International Conference on Measuring Technology and Mechatronics Automation (pp. 738–741). ICMTMA 2009.

    Google Scholar 

  • Lijun, C., Yingtang, Z., Zhining, L., Guoquan, R., & Yiquan, S. (2010). Research on smart sensor network in fault diagnose system. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (pp. 23–26). CMCE 2010.

    Google Scholar 

  • Lim, W. L. (2009). The application of artificial neural networks for sensor validation in diesel engine condition monitoring and fault diagnosis. M. Phil., University of Newcastle upon Tyne.

    Google Scholar 

  • Liu, H., Wei, T., & Wang, X. (2009). Signal decomposition and fault diagnosis of a scara robot based only on tip acceleration measurement. In 2009 International Conference on Mechatronics and Automation (pp. 4811–4816). IEEE.

    Google Scholar 

  • Lopes, V., Jr., Park, G., Cudney, H. H., & Inman, D. J. (2000). Impedance-based structural health monitoring with artificial neural networks. Journal of Intelligent Material Systems and Structures, 11, 206–214.

    Article  Google Scholar 

  • Loutridis, S. J. (2008). Gear failure prediction using multiscale local statistics. Engineering Structures, 30, 1214–1223.

    Article  Google Scholar 

  • Ma, H., Li, H., Xie, W., & Chen, F. (2007). Vibration research on winding faults of induction motor based on experiment modal analysis method. In 8th International Power Engineering Conference (pp. 366–370). IPEC 2007.

    Google Scholar 

  • Marandu, S. I. (2014). Design of a mechatronic system for measurement of surface fatigue in dental composites Ph.D. Thesis, Newcastle University.

    Google Scholar 

  • Marwala, T. (2012). Condition monitoring using computational intelligence methods. London: Springer.

    Book  Google Scholar 

  • Meruane, V., & Heylen, W. (2011). An hybrid real genetic algorithm to detect structural damage using modal properties. Mechanical Systems and Signal Processing, 25, 1559–1573.

    Article  Google Scholar 

  • Mohanty, A. R. (2015). Machinery condition monitoring: Principles and practices. London: Taylor & Francis Group.

    Google Scholar 

  • Mohseni, S., & Namvar, M. (2009). Fault diagnosis in robot manipulators in presence of modeling uncertainty and sensor noise. In 2009 IEEE Control Applications, (CCA) & Intelligent Control,(ISIC) (pp. 1750–1755). IEEE.

    Google Scholar 

  • Montgomery, D. C., & Runger, G. C. (2014). Applied statistics and probability for engineers. New York: Wiley.

    Google Scholar 

  • Moslem, K., & Nafaspour, R. (2002). Structural damage detection by genetic algorithms. AIAA Journal, 40, 1395–1401.

    Article  Google Scholar 

  • Munakata, T. (2008). Fundamentals of the new artificial intelligence. London: Springer.

    MATH  Google Scholar 

  • Navarro, L., Delgado, M., Urresty, J., Cusid́, J., & Romeral, L. (2010) Condition monitoring system for characterization of electric motor ball bearings with distributed fault using fuzzy inference tools, 1159–1163.

    Google Scholar 

  • Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems. Reading: Addison Wesley.

    Google Scholar 

  • Niknam, S. A., Thomas, T., Wesley Hines, J., & Sawhney, R. (2013). Analysis of acoustic emission data for bearings subject to unbalance. International Journal of Prognostics and Health Management, 4.

    Google Scholar 

  • Ogaji, S. O. T.-O. (2003). Advanced gas-path fault diagnostics for stationary gas turbines. Ph.D. Thesis, Cranfield University.

    Google Scholar 

  • Ogbonnah, V. (2007). Condition monitoring of gear failure with acoustic emission. M.Sc, Blekinge Institute of Technology.

    Google Scholar 

  • Olsson, E., Funk, P., & Xiong, N. (2004). Fault diagnosis in industry using sensor readings and case-based reasoning. Journal of Intelligent and Fuzzy Systems, 15, 41–46.

    Google Scholar 

  • Onsy, A. (2009). Intelligent health monitoring of power transmission systems Ph. D. Thesis, Newcastle upon Tyne.

    Google Scholar 

  • Onsy, A., Bicker, R., Shaw, B., & Fouad, M. M. (2012). Application of image registration methods in monitoring the progression of surface fatigue failures in geared transmission systems.

    Google Scholar 

  • Ostachowicz, W., Krawczuk, M., & Cartmell, M. (2002). The location of a concentrated mass on rectangular plates from measurements of natural vibrations. Computers and Structures, 80, 1419–1428.

    Article  Google Scholar 

  • Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. Journal of Intelligent Manufacturing, 22, 491–504.

    Article  Google Scholar 

  • Pan, M. C., Van Brussel, H., & Sas, P. (1998). Intelligent joint fault diagnosis of industrial robots. Mechanical Systems and Signal Processing, 12, 571–588.

    Article  Google Scholar 

  • Parey, A., El Badaoui, M., Guillet, F., & Tandon, N. (2006). Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. Journal of Sound and Vibration, 294, 547–561.

    Article  Google Scholar 

  • Parhi, D. R., & Dash, A. K. (2011). Application of neural networks and finite elements for condition monitoring of structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 1329–1339.

    Google Scholar 

  • Park, H. G., & Zak, M. (2003). Gray-box approach for fault detection of dynamical systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 125, 451–454.

    Article  Google Scholar 

  • Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192, 2031–2057.

    Article  MATH  Google Scholar 

  • Pawar, P. M., & Ganguli, R. (2005). Matrix crack detection in thin-walled composite beam using genetic fuzzy system. Journal of Intelligent Material Systems and Structures, 16, 395–409.

    Article  Google Scholar 

  • Qin, G., & Hu, N. (2012). Design of embedded wireless sensor and its soft encapsulation for embedded monitoring of helicopter planetary gear set. Journal of Physics: Conference Series, 364.

    Google Scholar 

  • Qu, Y., He, D., Yoon, J., Van Hecke, B., Bechhoefer, E., & Zhu, J. (2014). Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors—a comparative. Sensors (Switzerland), 14, 1372–1393.

    Article  Google Scholar 

  • Rad, M. F., & Shafai, L. (2009) A wireless embedded sensor for structural health monitoring applications. In 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009 (pp. 1–4). ANTEM/URSI 2009, 15–18 February 2009.

    Google Scholar 

  • Rai, N., & Rai, B. (2013). Neural network based closed loop control of dc motor using arduino uno. International Journal of Engineering Trends and Technology, 4.

    Google Scholar 

  • Randall, R. B. (2004). Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Engineering Failure Analysis, 11, 177–190.

    Article  Google Scholar 

  • Randall, R. B. (2011). Vibration-based condition monitoring. New York: Wiley.

    Google Scholar 

  • Rojas, A., & Nandi, A. K. (2006). Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mechanical Systems and Signal Processing, 20, 1523–1536.

    Article  Google Scholar 

  • Sagar, P. M. (2002). Embedded operating systems for real-time applications. Bombay.

    Google Scholar 

  • Sainz Palmero, G. I., Juez Santamaria, J., Moya De La Torre, E. J., & Perán González, J. R. (2005). Fault detection and fuzzy rule extraction in AC motors by a neuro-fuzzy ART-based system. Engineering Applications of Artificial Intelligence, 18, 867–874.

    Article  Google Scholar 

  • Samanta, B. (2004). Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 18, 625–644.

    Article  Google Scholar 

  • Samarasinghe, S. (2007). Neural networks for applied sciences and engineering, Taylor and Francis Group, LLC.

    Google Scholar 

  • Sarrafzadeh, M., Dabiri, F., Jafari, R., Massey, T., & Nahapetan, A. (2006). Low power light-weight embedded systems. 207–212.

    Google Scholar 

  • Sawalhi, N., & Randall, R. B. (2008). Simulating gear and bearing interactions in the presence of faults. Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mechanical Systems and Signal Processing, 22, 1924–1951.

    Article  Google Scholar 

  • Schoen, R. R., Habetler, T. G., Kamran, F., & Bartheld, R. G. (1995). Motor bearing damage detection using stator current monitoring. IEEE Transactions on Industry Applications, 31, 1274–1279.

    Article  Google Scholar 

  • Seo, J., Yoon, H., Ha, H., Hong, D., & Kim, W. (2011). Infrared thermographic diagnosis mechnism for fault detection of ball bearing under dynamic loading conditions. Sanya.

    Google Scholar 

  • Shao, Y., & Nezu, K. (2005). Design of mixture de-noising for detecting faulty bearing signals. Journal of Sound and Vibration, 282, 899–917.

    Article  Google Scholar 

  • Sharma, S. (2008). Application of support vector machines for damage detection in structures. M.Sc, Worcester Polytechnic Institute.

    Google Scholar 

  • Shimada, M., & Mita, A. (2005). Damage assessment of bending structures using support vector machine. In Smart Structures and Materials (pp. 923–930). International Society for Optics and Photonics.

    Google Scholar 

  • Shimada, M., Mita, A., & Feng, M. Q. (2006). Damage detection of structures using support vector machines under various boundary conditions. International Society for Optics and Photonics.

    Google Scholar 

  • Shiroishi, J., Li, Y., Liang, S., Kurfess, T., & Danyluk, S. (1997). Bearing condition diagnostics via vibration and acoustic emission measurements. Mechanical Systems and Signal Processing, 11, 693–705.

    Article  Google Scholar 

  • Shukla, A. P., Garg, H., Varshneya, G., & Srivastava, A. K. (2009). Real time acquisition of vehicle diagnostic data using wireless sensor network. In Fifth IEEE Conference on Wireless Communication and Sensor Networks (WCSN), 2009 (pp. 1–5). IEEE.

    Google Scholar 

  • Srovnal, V., & Penhaker, M. (2007). Health maintenance embedded systems in home care applications.

    Google Scholar 

  • Stack, J. R., Habetler, T. G., & Harley, R. G. (2004). Bearing fault detection via autoregressive stator current modeling. IEEE Transactions on Industry Applications, 40, 740–746.

    Article  Google Scholar 

  • Stamboliska, Z., Rusiński, E., & Moczko, P. (2015). Proactive condition monitoring of low-speed machines. Switzerland: Springer International Publishing Switzerland.

    Google Scholar 

  • Sun, Z., & Chang, C. C. (2004). Statistical wavelet-based method for structural health monitoring. Journal of Structural Engineering, 130, 1055–1062.

    Article  Google Scholar 

  • Taylor, S. G., Farinholt, K. M., Park, G., Farrar, C. R., & Todd, M. D. (2011). Application of a wireless sensor node to health monitoring of operational wind turbine blades. 45–53.

    Google Scholar 

  • Teng, W., Wang, F., Zhang, K., Liu, Y., & Ding, X. (2014). Pitting fault detection of a wind turbine gearbox using empirical mode decomposition. Journal of Mechanical Engineering, 60, 12–20.

    Google Scholar 

  • Terra, M. H., & Tinós, R. (2001). Fault detection and isolation in robotic manipulators via neural networks: A comparison among three architectures for residual analysis. Journal of Robotic Systems, 18, 357–374.

    Article  MATH  Google Scholar 

  • Trendafilova, I., & Van Brussel, H. (2003). Condition monitoring of robot joints using statistical and nonlinear dynamics tools. Meccanica, 38, 283–295.

    Article  MATH  Google Scholar 

  • Tripathy, J. R., Tripathy, H. K., & Nayak, S. S. (2014). Artificial neural network implementation in microchip PIC 18F45J10 8-bit microcontroller. International Journal of Engineering and Advanced Technology (IJEAT), 3.

    Google Scholar 

  • Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognostic for engineering systems. New York: John Wiley.

    Google Scholar 

  • Van, M., Kang, H. J., & Ro, Y. S. (2011). A robust fault detection and isolation scheme for robot manipulators based on neural networks. In International Conference on Intelligent Computing (pp. 25–32). Berlin: Springer.

    Google Scholar 

  • Vemuri, A. T., Polycarpou, M. M., & Diakourtis, S. A. (1998). Neural network based fault detection in robotic manipulators. IEEE Transactions on Robotics and Automation, 14, 342–348.

    Article  Google Scholar 

  • Verdonck, W., Swevers, J., & Samin, J. C. (2001). Experimental robot identification: Advantages of combining internal and external measurements and of using periodic excitation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 123, 630–636.

    Article  Google Scholar 

  • Verma, N. K., Sarkar, S., Dixit, S., Sevakula, R. K., & Salour, A. (2013). Android app for intelligent CBM. In IEEE International Symposium on Industrial Electronics.

    Google Scholar 

  • Wanbin, W., & Tse, P. W. (2006). Remote machine monitoring through mobile phone, smartphone or pda. In Proceedings of the 1st World Congress on Engineering Asset Management (pp. 309–315). WCEAM 2006.

    Google Scholar 

  • Wang, Q. (2009). Artificial neural network and hidden space SVM for fault detection in power system. In International Symposium on Neural Networks (pp. 391–397). Berlin: Springer.

    Google Scholar 

  • Wang, W., & Zhang, W. (2008). Early defect identification: Application of statistical process control methods. Journal of Quality in Maintenance Engineering, 14, 225–236.

    Article  Google Scholar 

  • Wei, X. B., Zheng, W., & Lin, R. (2011). Design of LabView-based system of noise measurement on gear box.

    Google Scholar 

  • Wu, B., Lin, J., & Xiong, X. (2011). Design and implementation of intelligent monitoring and diagnosis system based on WSN and MAS. CCIS, 238, 290–297.

    Article  Google Scholar 

  • Yadav, S. K., & Kalra, P. K. (2010). Condition monitoring of internal combustion engine using EMD and HMM.

    Google Scholar 

  • Yan, J., Ma, H., Li, W., & Zhu, H. (2009). Assessment of rotor degradation in steam turbine using support vector machine. IEEE

    Google Scholar 

  • Yen, G. G., & Meesad, P. (2001). An effective neuro-fuzzy paradigm for machinery condition health monitoring. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 31, 523–536.

    Article  Google Scholar 

  • Yildirim, A., & Eski, I. (2010). Noise analysis of robot manipulator using neural networks. Robotics and Computer-Integrated Manufacturing, 26, 282–290.

    Article  Google Scholar 

  • Yuan, J., Liu, G., & Wu, B. (2011). Power efficiency estimation-based health monitoring and fault detection of modular and reconfigurable robot. IEEE Transactions on Industrial Electronics, 58, 4880–4887.

    Article  Google Scholar 

  • Zhai, Y., & Cheng, X. (2011). Design of smart home remote monitoring system based on embedded system. In IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE), 2011 (Vol. 2, pp. 41–44). IEEE.

    Google Scholar 

  • Zhang, J. Z., & Chen, J. C. (2008). Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system. International Journal of Advanced Manufacturing Technology, 39, 118–128.

    Article  Google Scholar 

  • Zhang, E., Zhang, H., & Xue, B. (2007) Application of integrated neural network based on information combination for fault diagnosis in steam turbine generator, 1293–1297.

    Google Scholar 

  • Zhang, Y. F., Ma, B., Zhu, Y., & Zhang, J. L. (2009). Study on condition monitoring of power-shift steering transmission based on support vector machine.

    Google Scholar 

  • Zhang, Z., Verma, A., & Kusiak, A. (2012). Fault analysis and condition monitoring of the wind turbine gearbox. IEEE Transactions on Energy Conversion, 27, 526–535.

    Article  Google Scholar 

  • Zhong, J., Yang, Z., & Wong, S. F. (2010). Machine condition monitoring and fault diagnosis based on support vector machine, 2228–2233.

    Google Scholar 

  • Zhou, W., Habetler, T. G., & Harley, R. G. (2008). Bearing fault detection via stator current noise cancellation and statistical control. IEEE Transactions on Industrial Electronics, 55, 4260–4269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Abdulhady Jaber .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaber, A.A. (2017). Literature Review. In: Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44932-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44932-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44931-9

  • Online ISBN: 978-3-319-44932-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics