Skip to main content

Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so-called glutamine–glutamate (GABA) cycle. The ketoacids α-ketoglutarate and oxaloacetate are removed from the cycle for this process. When something is removed from the TCA cycle it must be replaced to permit the continued function of this essential pathway, a process termed anaplerosis. This anaplerotic process in the brain is mainly carried out by pyruvate carboxylation performed by pyruvate carboxylase. The present book chapter gives an introduction and overview into this carboxylation and additionally anaplerosis mediated by propionyl-CoA carboxylase under physiological conditions in the adult and in the developing rodent brain. Furthermore, examples are given about pathological conditions in which anaplerosis is disturbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPK:

AMP activated protein kinase

CBZ:

Carbamazepine

GS:

Glutamine synthetase

ME:

Malic enzyme

MRS:

Magnetic resonance spectroscopy

P:

Postnatal day

PAG:

Phosphate activated glutaminase

PC:

Pyruvate carboxylase

PCC:

Propionyl-CoA carboxylase

PDH:

Pyruvate dehydrogenase

PEPCK:

Phosphoenolpyruvate carboxykinase

PPP:

Pentose phosphate pathway

PTZ:

Pentylenetetrazole

TCA:

Tricarboxylic acid

References

  • Alston TA, Mela L, Bright HJ (1977) 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci U S A 74:3767–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves PM, McKenna MC, Sonnewald U (1995) Lactate metabolism in mouse brain astrocytes studied by [13C]NMR spectroscopy. Neuroreport 6:2201–2204

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cerebr Blood Flow Metab 21:1133–1145

    Article  CAS  Google Scholar 

  • Baburamani AA, Lo C, Castillo-Melendez M, Walker DW (2013) Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero. Microvasc Res 85:1–9

    Article  PubMed  Google Scholar 

  • Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak LK, Iversen P, Sorensen M, Keiding S, Vilstrup H, Ott P, Waagepetersen HS, Schousboe A (2009) Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab Brain Dis 24:135–145

    Article  CAS  PubMed  Google Scholar 

  • Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 106:14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L et al (eds) Glutamine, glutamate and GABA in the central nervous system. Alan R. Liss, Inc., New York, pp 205–217

    Google Scholar 

  • Borges K, Sonnewald U (2012) Triheptanoin—a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res 100:239–244

    Article  CAS  PubMed  Google Scholar 

  • Boulland J-L, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–275

    Article  PubMed  Google Scholar 

  • Brekke EM, Morken TS, Wideroe M, Haberg AK, Brubakk AM, Sonnewald U (2014) The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 34:724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterworth RF (2003) Hepatic encephalopathy. Alcohol Res Health 27:240–246

    PubMed  Google Scholar 

  • Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64:2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury GM, Patel AB, Mason GF, Rothman DL, Behar KL (2007) Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. J Cereb Blood Flow Metab 27:1895–1907

    Article  CAS  PubMed  Google Scholar 

  • Dadsetan S, Bak LK, Sorensen M, Keiding S, Vilstrup H, Ott P, Leke R, Schousboe A, Waagepetersen HS (2011) Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochem Int 58:482–488

    Article  Google Scholar 

  • Dadsetan S, Kukolj E, Bak LK, Sorensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS (2013) Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab 33:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310

    Article  CAS  PubMed  Google Scholar 

  • Eloqayli H, Dahl CB, Gotestam KG, Unsgard G, Sonnewald U (2004) Changes of glial-neuronal interaction and metabolism after a subconvulsive dose of pentylenetetrazole. Neurochem Int 45:739–745

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Park LC, Zhang H, Sorbi S, Calingasan NY (1999) Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann N Y Acad Sci 893:79–94

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Rae C, Dixon RM, Radda GK, Matthews PM (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71:2477–2486

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Rae C, Radda GK, Matthews PM (1999) Lactate-induced inhibition of glucose catabolism in guinea pig cortical brain slices. Neurochem Int 35:405–409

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Keun H, Richter C, Moskau D, Rae C, Nicholson JK (2003) Compartmentation of metabolism probed by [2-13C]alanine: improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochem Int 42:93–99

    Article  CAS  PubMed  Google Scholar 

  • Håberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18(11):1223–1232

    Google Scholar 

  • Håberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem Int 48:531–540

    Article  PubMed  Google Scholar 

  • Hassel B (2001) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65:2227–2234

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Sonnewald U (2002) Effects of potassium and glutamine on metabolism of glucose in astrocytes. Neurochem Res 27:167–171

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study. J Neurochem 64:2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2011) Astrocytic energy metabolism and glutamate formation—relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 29:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238

    Article  CAS  Google Scholar 

  • Hogstad S, Svenneby G, Torgner IA, Kvamme E, Hertz L, Schousboe A (1988) Glutaminase in neurons and astrocytes cultured from mouse brain: kinetic properties and effects of phosphate, glutamate, and ammonia. Neurochem Res 13:383–388

    Article  CAS  PubMed  Google Scholar 

  • Huang HM, Zhang H, Xu H, Gibson GE (2003) Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochim Biophys Acta 1637:119–126

    Article  CAS  PubMed  Google Scholar 

  • Juurlink BH, Schousboe A, Jorgensen OS, Hertz L (1981) Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures. J Neurochem 36:136–142

    Article  CAS  PubMed  Google Scholar 

  • Kanamatsu T, Tsukada Y (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C]] glucose with or without ammonium acetate. Brain Res 841:11–19

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Borges K, Petrou S, Reid CA (2013) Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 103:101–105

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Starkov AA, Calingasan NY, Gardian G, Browne SE, Yang L, Bubber P, Gibson GE, Patel MS, Beal MF (2004) Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem 88:1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958

    Article  CAS  PubMed  Google Scholar 

  • Kurz GM, Wiesinger H, Hamprecht B (1993) Purification of cytosolic malic enzyme from bovine brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme in glial cells of neural primary cultures. J Neurochem 60:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Kusaka T, Matsuura S, Fujikawa Y, Okubo K, Kawada K, Namba M, Okada H, Imai T, Isobe K, Itoh S (2004). Relationship between cerebral interstitial levels of amino acids and phosphorylation potential during secondary energy failure in hypoxic-ischemic newborn piglets. Pediatr Res 55(2):273–279

    Google Scholar 

  • Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Dev Neurosci 3:177–185

    Article  CAS  PubMed  Google Scholar 

  • Leke R, Bak LK, Anker M, Melo TM, Sorensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Sonnewald U, Schousboe A, Waagepetersen HS (2011) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  CAS  PubMed  Google Scholar 

  • Marin-Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM (2013) Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cereb Blood Flow Metab 33:175–182

    Article  CAS  PubMed  Google Scholar 

  • Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 100:73–86

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Prince DA (1987) Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol 393:743–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36:451–459

    Article  CAS  PubMed  Google Scholar 

  • McKenna M, Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism of the brain. In: Brady ST, Siegel GJ, Albers RW, Price DL (eds) Basic neurochemistry: principles of molecular, cellular, and medical neurobiology, 8th edn. Elsevier Academic, Oxford, pp 200–231

    Chapter  Google Scholar 

  • Melø TM, Nehlig A, Sonnewald U (2006) Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem Int 48:498–507

    Article  PubMed  Google Scholar 

  • Merle M, Bouzier-Sore AK, Canioni P (2002) Time-dependence of the contribution of pyruvate carboxylase versus pyruvate dehydrogenase to rat brain glutamine labelling from [1-(13)C]glucose metabolism. J Neurochem 82:47–57

    Article  CAS  PubMed  Google Scholar 

  • Mohler H, Patel AJ, Balazs R (1974) Metabolic compartmentation in the brain: metabolism of a tricarboxylic acid cycle intermediate, (1,4-14C)succinate, after intracerebral administration. J Neurochem 23:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2013) Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem Res 39(3):556–569

    Article  PubMed  Google Scholar 

  • Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2014) Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke 45:2777–2785

    Article  PubMed  Google Scholar 

  • Nilsen LH, Witter MP, Sonnewald U (2014) Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J Cereb Blood Flow Metab 34:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    Article  PubMed  Google Scholar 

  • Patel MS (1974a) The effect of ketone bodies on pyruvate carboxylation by rat brain mitochondria. J Neurochem 23:865–867

    Article  CAS  PubMed  Google Scholar 

  • Patel MS (1974b) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22:717–724

    Article  CAS  PubMed  Google Scholar 

  • Puka-Sundvall M, Sandberg M, Hagberg H (1997) Brain injury after hypoxia-ischemia in newborn rats: relationship to extracellular levels of excitatory amino acids and cysteine. Brain Res 750(1–2):325–328

    Google Scholar 

  • Qu H, Haberg A, Haraldseth O, Unsgard G, Sonnewald U (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22:429–436

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Eloqayli H, Unsgard G, Sonnewald U (2001) Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66:1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Hansen JT, Bubb WA, Bröer S, Bröer A (2005) Alanine transport, metabolism and cycling in the brain. Proc Intl Soc Magn Reson Med 2481

    Google Scholar 

  • Rae C, Nasrallah F, Bröer S (2009) Metabolic effects of blocking lactate transport in brain cortical tissue slices using an inhibitor specific to MCT1 and MCT2. Neurochem Res 34:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Rao VR, Finkbeiner S (2007) NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci 30:284–291

    Article  CAS  PubMed  Google Scholar 

  • Rathman SC, Gregory JF III, McMahon RJ (2003) Pharmacological biotin supplementation maintains biotin status and function in rats administered dietary carbamazepine. J Nutr 133:2857–2862

    CAS  PubMed  Google Scholar 

  • Scafidi S, O’Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M (2009) Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem 109(Suppl 1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff M, Levrat V, Acquaviva C, Vianey-Saban C, Rolland MO, Guffon N (2006) A case of pyruvate carboxylase deficiency with atypical clinical and neuroradiological presentation. Mol Genet Metab 87:175–177

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A (1972) Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Exp Brain Res 15:521–531

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Walls A, Bak L, Waagepetersen H (2015) Astroglia and brain metabolism: focus on energy and neurotransmitter amino acid homeostasis. In: Verkhratsky A, Parpura V (eds) Colloquium series on neuroglia in biology and medicine from physiology to disease. Morgan & Claypool Life Sciences, San Rafael, pp 1–63

    Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Leo GC, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J Neurochem 61:315–323

    Article  CAS  PubMed  Google Scholar 

  • Smeland OB, Hadera MG, McDonald TS, Sonnewald U, Borges K (2013) Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice. J Cereb Blood Flow Metab 33(7):1090–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snead OC III, Stephens HI (1983) Ontogeny of cortical and subcortical electroencephalographic events in unrestrained neonatal and infant rats. Exp Neurol 82:249–269

    Article  PubMed  Google Scholar 

  • Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—where do all the carbons go? J Neurochem 131(4):399–406

    Article  CAS  PubMed  Google Scholar 

  • Varoqui H, Zhu H, Yao D, Ming H, Erickson JD (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054

    Article  CAS  PubMed  Google Scholar 

  • Vogel R, Hamprecht B, Wiesinger H (1998a) Malic enzyme isoforms in astrocytes: comparative study on activities in rat brain tissue and astroglia-rich primary cultures. Neurosci Lett 247:123–126

    Article  CAS  PubMed  Google Scholar 

  • Vogel R, Jennemann G, Seitz J, Wiesinger H, Hamprecht B (1998b) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain. J Neurochem 71:844–852

    Article  CAS  PubMed  Google Scholar 

  • Voss CM, Pajecka K, Stridh MH, Nissen JD, Schousboe A, Waagepetersen HS (2015) AMPK activation affects glutamate metabolism in astrocytes. Neurochem Res 40(12):2431–2442. doi:10.1007/s11064-015-1558-5

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001a) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2001b) Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia 35:246–252

    Article  CAS  PubMed  Google Scholar 

  • Wallace JC, Jitrapakdee S, Chapman-Smith A (1998) Pyruvate carboxylase. Int J Biochem Cell Biol 30:1–5

    Article  CAS  PubMed  Google Scholar 

  • Weiss MD, Derazi S, Rossignol C, Varoqui H, Erickson JD, Kilberg MS, Anderson KJ (2003) Ontogeny of the neutral amino acid transporter SAT1/ATA1 in rat brain. Brain Res Dev Brain Res 143:151–159

    Article  CAS  PubMed  Google Scholar 

  • Wilbur DO, Patel MS (1974) Development of mitochondrial pyruvate metabolism in rat brain. J Neurochem 22:709–715

    Article  CAS  PubMed  Google Scholar 

  • Willis S, Stoll J, Sweetman L, Borges K (2010) Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Oz G, LaNoue KF, Keiger CJ, Berkich DA, Gruetter R, Hutson SH (2004) Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin. J Neurochem 90:1104–1116

    Article  CAS  PubMed  Google Scholar 

  • Yager JY, Brucklacher RM, Vannucci RC (1992) Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol 262:H672–H677

    CAS  PubMed  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fatty Acids 70:277–285

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C (2007) The anaplerotic flux and ammonia detoxification in hepatic encephalopathy. Metab Brain Dis 22:235–249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sonnewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brekke, E., Morken, T.S., Walls, A.B., Waagepetersen, H., Schousboe, A., Sonnewald, U. (2016). Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_3

Download citation

Publish with us

Policies and ethics