Skip to main content

Corrosion Problems and Solutions at Oil Refinery and Petrochemical Units

  • Chapter
  • First Online:
Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry

Part of the book series: Topics in Safety, Risk, Reliability and Quality ((TSRQ,volume 32))

Abstract

Specific corrosion problems of sulfur compounds, hydrogen gas, naphthenic acids, and amine solutions, physicochemical mechanisms, anti-corrosion and monitoring measures are described. Sulfidic corrosion and hydrogen attack can occur both at low and high temperatures. Naphthenic acid corrosion occurs only at high (190 °C < T < 360 °C) temperatures. Amine solutions are corrosive at ~100–130 °C. Case studies at refineriesʼ units are analyzed and solutions are given.

A pessimist sees difficulties in every opportunity; an optimist sees opportunities in every difficulty.

Winston Churchill (1874–1965), a British politician.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Study on oil refining and oil markets (2008) Prepared for European Commission by Purvin & Gertz

    Google Scholar 

  2. NACE International Publication 43104 (2014) Overview of sulfidation (sulfidic) corrosion in petroleum refining hydroprocessing units. NACE International, Houston, TX, USA

    Google Scholar 

  3. API RP 939-C (2008) Guidelines for avoiding sulfidation (sulfidic) corrosion failures in oil refineries. American Petroleum Institute, Washington

    Google Scholar 

  4. Gutzeit J, Merrick RD, Scharfstein LR (1987) Corrosion in petroleum refining and petrochemical operations. In: Corrosion, vol 13, ASM Handbook, ASM International, pp 1262–1287

    Google Scholar 

  5. Groysman A (2014) Corrosion in systems for storage and transportation of petroleum products and biofuels. Springer, Dordrecht

    Book  Google Scholar 

  6. Gutzeit J (2006) Crude unit corrosion guide. PCC Process Corrosion Consultants

    Google Scholar 

  7. Marcano N, Larter S, Snowdon L, Bennett B (2013) An overview of the origin, pathways and controls of H2S production during thermal recovery operations of heavy and extra-heavy oil. Paper 90187 presented at the GeoConvention 2013, Integration: Geoscience Engineering Partnership, 6–12 May 2013, Calgary, AB

    Google Scholar 

  8. Kapadia P, Wang J, Kallos M, Gates I (2012) New thermal-reactive reservoir engineering model predicts hydrogen sulfide generation in steam assisted gravity drainage. J Petrol Sci Eng 94–95:100–111

    Article  Google Scholar 

  9. Hyne JB et al (1982) Aquathermolysis of heavy oils. Revis Tec Intevep 2:87–94

    Google Scholar 

  10. Cross MM, Manning DAC, Bottrell SH, Worden RH (2004) Thermochemical sulfate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs. Org Geochem 35(4):393–404

    Article  Google Scholar 

  11. Lewandowski DA (2000) Design of thermal oxidation systems for volatile organic compounds. CRC LLC Lewis Publishers, Boca Raton

    Google Scholar 

  12. Groysman A (2010) Corrosion for everybody. Springer, Dordrecht

    Book  Google Scholar 

  13. Lai GY (1990) High-temperature corrosion of engineering alloys. ASM International

    Google Scholar 

  14. Wright IG (1987) High-temperature corrosion. In: Corrosion, vol 13, ASM Handbook, ASM International, pp 97–103

    Google Scholar 

  15. Antos GJ, Aitani AM (eds) (2004) Catalytic naphtha reforming, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  16. Wiehe IA (2008) Process chemistry of macromolecules. CRC Press Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  17. Wang W, Watkinson AP (2011) Iron sulfide and coke fouling from sour oils: review and initial experiments. In: Proceedings of international conference on heat exchanger fouling and cleaning. Crete Island, Greece, pp 23–30

    Google Scholar 

  18. McConomy HF (1963) High temperature sulfidic corrosion in hydrogen free environment. API Proc 43(3):78–96

    Google Scholar 

  19. Couper AS, Gorman JW (1971) Computer correlations to estimate high-temperature hydrogen sulfide (H2S) corrosion in refinery streams. Mater Prot and Perform 10(1):31–37

    Google Scholar 

  20. API RP 581 (2008) Risk-based inspection technology. API International, Washington

    Google Scholar 

  21. Corrosion (1987) vol 13, ASM International, p 1271

    Google Scholar 

  22. White RA, Ehmke EF (1991) Materials selection for refineries and associated facilities NACE, p 65

    Google Scholar 

  23. Study on oil refining and oil markets (2008) Prepared for European Commission by Purvin & Gertz

    Google Scholar 

  24. Shah P et al (2015) Advances in processing high naphthenic acid crudes. PTQ Q2 2015, 1–7. www.digitalrefining.com/article/1001119

  25. Johnson D, MacAteer G, Zuk H (2002) Naphthenic acid corrosion field evaluation and mitigation studies. ERTC (European Refining Technology Conference), 7th Annual Meeting, Paris

    Google Scholar 

  26. Jayaraman A, Singh H, Lefebvre Y (1986) Naphthenic acid corrosion in petroleum refineries. A review. Revue de l`Institute Francais Du Pétrole 41(2):265–274

    Article  Google Scholar 

  27. Speight JG (2014) High acid crudes. Elsevier, Oxford

    Google Scholar 

  28. Dalmia A (2013) Analysis of naphthenic acids in filtered oil sands process water (OSPW) using LC/TOF with no sample preparation. PerkinElmer, Shelton. http://www.perkinelmer.com/CMSResources/Images/44-154957APP_Analysis_of_Nalphthenic_Acids.pdf

  29. Meredith W, Kelland SJ, Jones DM (2000) Influence of biodegradation on crude oil activity and carboxylic acid composition. Org Geochem 31(11):1059–1073

    Article  Google Scholar 

  30. Vandecasteele JP (ed) (2008) Petroleum Microbiology, Edition Technip, Paris

    Google Scholar 

  31. Grewer DM, Young RF, Whittal RM, Fedorak PM (2010) Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci Total Environ 408:5997–6010

    Article  Google Scholar 

  32. ASTM D664–11a (2011) Standard test method for acid number of petroleum products by potentiometirc titration. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  33. Da Silva MT et al (2012) Method for determination of the total acid number and naphthenic acid number of petroleum, petroleum cuts and petroleum emulsions of water-in-oil type by mid-infrared spectroscopy. US patent 8,222,605

    Google Scholar 

  34. Flego C et al (2014) Evolution of naphthenic acids during the corrosion process. Energy Fuels 28:1701–1708

    Article  Google Scholar 

  35. Messer B, Tarleton B, Beaton M, Phillips T (2004) New theory for naphthenic acid corrosivity of Athabasca oilsands crudes. Paper 04634 presented at the CORROSION 2004, NACE International, Houston, TX, USA

    Google Scholar 

  36. Groysman A, Penner J (2008) Process for inhibiting naphthenic acid corrosion, WO/2009/053971

    Google Scholar 

  37. Lu T (2012) Challenges in opportunity crude processing. NALCO, An Ecolab Company

    Google Scholar 

  38. Qing W (2010) Processing high TAN crude: part1, PTQ Q4, http://www.digitalrefining.com/article_1000524.pdf

  39. NACE Publication 34105 (2015) Effect nonextractable chlorides on refinery corrosion and fouling. NACE International, Houston, TX, USA

    Google Scholar 

  40. Clemente JS, Fedorak PM (2005) A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere (Elsevier) 60(5):585–600

    Article  Google Scholar 

  41. Han X et al (2008) Influence of molecular structure on the biodegradability of naphthenic acids. Environ Sci Technol 42:1290–1295

    Article  Google Scholar 

  42. Biryukova OV, Fedorak PM, Quideau SA (2007) Biodegradation of naphthenic acids by rhizosphere microorganisms. Chemosphere (Elsevier) 67:2058–2064

    Article  Google Scholar 

  43. Herman DC, Fedorak PM, Mackinnon MD, Costerton JW (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can J Microbiol 40:467–477

    Article  Google Scholar 

  44. Groysman A et al (2005) Corrosiveness of acidic crude oil and its fractions. In: Proceedings EUROCORR 2005, Lisbon

    Google Scholar 

  45. Groysman A et al (2005) Corrosiveness of acidic crude oil and its fractions. Mater Perform 44(4):34–39

    Google Scholar 

  46. Groysman A et al (2005) Study of corrosiveness of acidic crude oil and its fractions. Paper 05568 presented at the NACE CORROSION 2005. NACE International, Houston, TX, USA

    Google Scholar 

  47. Dean FWH, Powell SW (2006) Hydrogen flux and high temperature acid corrosion. Paper 06436 presented at the CORROSION 2006. NACE International, Houston, TX, USA

    Google Scholar 

  48. Rangarajan P, Holmes F, Randolph B (2006) Effect of naphthenic acid structure on carbon steel corrosion. Conoco Philips Company, AIChE, Spring Meeting

    Google Scholar 

  49. Gutzeit J (2006) Crude unit corrosion guide. PCC Process Corrosion Consultants

    Google Scholar 

  50. Piehl RL (1988) Naphthenic acid corrosion in crude distillation units. Mater Perform 27(1):37–43

    Google Scholar 

  51. Kane RD, Chambers B (2011) High temperature crude oil corrosivity: where sulfur and naphthenic acid chemistry and metallurgy meet. Paper 4A presented at the Corrosion Solutions Conference 2011 Proceedings, pp 137–144

    Google Scholar 

  52. Kane RD, Cayard MS (2002) A Comprehensive study on naphthenic acid corrosion. Paper 02555 presented at the NACE CORROSION conference. NACE International, Houston, TX, USA

    Google Scholar 

  53. Kane R, Trillo E (2006) The state-of-the-art of naphthenic acid and sulfidic corrosion evaluation and prediction. Presentation at the 2006 Spring Meeting & 2nd Global Congress on Process Safety, 9th Topical Conference on Refinery Processing, AIChE

    Google Scholar 

  54. Bota GM et al (2010) Naphthenic acid corrosion of mild steel in the presence of sulfide scales formed in crude oil fractions at high temperature. Paper 10353 presented at the NACE CORROSION conference, NACE International, Houston, TX, USA

    Google Scholar 

  55. Gutzeit J (1977) Naphthenic acid corrosion in oil refineries. Mater Perform 16(10):24–35

    Google Scholar 

  56. Panchal CB et al (1999) Mechanisms of iron sulfide formation in refining processes. In: Bott TR (ed) Understanding heat exchanger fouling and its mitigation. Begell House, New York, pp 291–298

    Google Scholar 

  57. Wang W, Watkinson AP (2011) Iron sulphide and coke fouling from our oils: review and initial experiments. In: Proceedings on international conference on heat exchanger fouling and cleaning—2011, June 05–10, Crete Island, pp 23–30

    Google Scholar 

  58. Parker RJ, McFarlane RA (2000) Mitigation of fouling in bitumen furnaces by pigging. Energy Fuels 14:11–13

    Article  Google Scholar 

  59. Verachtert TA (1980) Trace acid removal in the pretreatment of petroleum distillate. US Patent 4,199,440 A

    Google Scholar 

  60. Varadaraj R, Sartori G (2000) Process for neutralization of petroleum acids (LAW810). US Patent 6,030,523 A

    Google Scholar 

  61. Gorbaty ML et al (2000) Process for neutralization of petroleum acids using overbased detergents. US Patent 6,054,042 A

    Google Scholar 

  62. Sartori G, Savage DW, Ballinger BH, Dalrymple DC (2000) Process for decreased the acidity of crudes using crosslinked polymeric amines (LAW871). US Patent 6,121,411 A

    Google Scholar 

  63. Sartori G, Savage DW, Ballinger BH (1997) Process for neutralization of petroleum acids. US Patent 5,683,626 A

    Google Scholar 

  64. Sartori G, Savage DW, Gorbaty ML, Ballinger BH (1997) Process for neutralization of petroleum acids using alkali metal trialkylsilanolates. US Patent 5,643,439 A

    Google Scholar 

  65. Kittrell N (2006) Removing Acid from Crude Oil, Crude Oil Quality Group, New Orleans Meeting, http://web.archive.org/web/20080528051559/ http://www.coqg.org/20060223TAN%20Merichem.pdf

  66. Kelland MA (2014) Production chemicals for the oil and gas industry, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  67. http://www.statoil.com/en/technologyinnovation/refiningandprocessing/oilrefining/refiningnaphtheniccrudes/pages/default.aspx

  68. Drzewicz P et al (2012) Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water. Environ Sci Technol 46(16):8984–8991

    Article  Google Scholar 

  69. Zhang A, Ma Q, Goddard WA, Tang Y (2004) Improved processes to remove naphthenic acids. Annual Technical Progress Report. California Institute of Technology

    Google Scholar 

  70. De Conto JF et al (2014) Naphthenic acids recovery from petroleum using ionic silica based hybrid material as stationary phase in solid phase extraction (SPE) process. Adsorption 20:917–923

    Article  Google Scholar 

  71. Sartori G et al (2004) Method for inhibiting corrosion using phosphorous acid. US Patent 6,706,669

    Google Scholar 

  72. Babaian-Kibala E (1993) Naphthenic acid corrosion inhibitor. US Patent 5,252,254

    Google Scholar 

  73. Babaian-Kibala E (1996) Phosphorus thioacid ester inhibitor for naphthenic acid corrosion. US Patent 5,552,085

    Google Scholar 

  74. Zetlmeisl MJ et al (1990) Corrosion inhibitors for use in hot hydrocarbons. US Patent 4,941,994

    Google Scholar 

  75. Zetlmeisl MJ (1995) A laboratory and field investigation of naphthenic acid corrosion inhibition. Paper 334 presented at the CORROSION/95, NACE International, Houston, TX, USA

    Google Scholar 

  76. Edmondson JG (1996) High temperature corrosion inhibitor. US Patent 5,500,107

    Google Scholar 

  77. Babaian-Kibala E (1994) Phosphate ester inhibitors solve naphthenic acid corrosion problems. Oil Gas J 92(9):31–35

    Google Scholar 

  78. Winslow MC et al (2005) Solutions for processing opportunity crudes. ERTC (European Refining Technology Conference, 10th Annual Meeting, Vienna

    Google Scholar 

  79. Jackson T, Winslow MC, Wilson M (2004) Prolonged experience processing high acid crude—cross oil & refining company. ERTC 9th Annual Meeting, Prague

    Google Scholar 

  80. Jackson T, Winslow MC, Wilson M (2005) Prolonged experience processing high acid crude cross oil & refining company. EUROCORR 2005, Lisbon

    Google Scholar 

  81. Vanhove A (2006) Advances in corrosion monitoring while processing high acidic opportunity crudes. Paper presented at the 7th Israel Conference on Corrosion and Electrochemistry, Bar-Ilan University

    Google Scholar 

  82. Babaian-Kibala E et al (1997) Use of sulfiding agents for enhancing the efficacy of phosphorus in controlling high temperature corrosion attack. US Patent 5,630,964

    Google Scholar 

  83. Yeganeh MS et al (2003) Method for inhibiting corrosion using certain phosphorous and sulfur-free compounds. US Patent 6,593,278

    Google Scholar 

  84. Sartori G et al (2003) Method for inhibiting corrosion using certain aromatic acidic species. US Patent 6,559,104

    Google Scholar 

  85. Sartori G et al (2003) Method for inhibiting corrosion using 4-sulfophthalic acid. US Patent 6,583,091

    Google Scholar 

  86. Zetlmeisl MJ (1999) Control of naphthenic acid corrosion with thiophosphorus compounds. US Patent 5,863,415

    Google Scholar 

  87. Edmondson JG (1997) High temperature corrosion inhibitor. US Patent 5,611,911

    Google Scholar 

  88. Edmondson JG (1994) High temperature corrosion inhibitor. US Patent 5,314,643

    Google Scholar 

  89. Deruyck F, Brabant JV (2001) Elongated steel object treated with a corrosion inhibiting composition. US Patent 6,329,0734

    Google Scholar 

  90. Revie RW (ed) (2006) Uhligʼs Corrosion Handbook, 2nd edition. Wiley, pp 1096–1097

    Google Scholar 

  91. Groysman A et al (2007) Low temperature naphthenic acid corrosion study. Paper 07569 presented at the CORROSION 2007. NACE International, Houston, TX, USA

    Google Scholar 

  92. O’Kane JM et al (2010) Detection and monitoring of naphthenic acid corrosion in a visbreaker unit using hydrogen flux measurements. Paper 10351 presented at the NACE Corrosion Conference. NACE International, Houston, TX, USA

    Google Scholar 

  93. Dean FWH et al (2010) Correlation of hydrogen flux and corrosion rate measurements carried out in a severe episode of corrosion-erosion attributable to naphthenic acid. Paper 10178 presented at the NACE Corrosion Conference. NACE International, Houston, TX, USA

    Google Scholar 

  94. Groysman A et al (2007) Naphthenic acid corrosion study. Paper presented at the EUROCORR conference, Freiburg, Germany

    Google Scholar 

  95. Groysman A et al (2007) Low temperature naphthenic acid corrosion study. Paper presented at the NACE CORROSION 2007 conference. NACE International, Houston, TX, USA

    Google Scholar 

  96. Shreider AV, Shparber IS, Archakov YI (1976) Vliyanie vodoroda na khimicheskoye I neftyanoye oborudovaniye (Influence of hydrogen on chemical and oil equipment). Mashinostroyeniye, Moscow

    Google Scholar 

  97. Pourbaix M (1974) Atlas of the electrochemical equilibria. NACE, Houston, TX, USA

    Google Scholar 

  98. Smialovski M (1967) Influence of hydrogen on properties of iron and its alloys. Zaschita metallov (Protection of Metals) 3(3):267–277

    Google Scholar 

  99. Grigoriev VP, Gorbachev VA (1970) Influence of stimulators of hydrogenation on dependence of cathodic polarization of metal on additives nature. Zaschita metallov (Protection of metals) 6(3):306–310

    Google Scholar 

  100. Ratajczykowa I, Palczewska W (1968) Hydrogen sulphide as catalytic poison in the kinetics of hydrogen atom recombination on iron. Bull De l`Acad Polanaise des Sci, Serie de sciences chimiques 16(2):77–82

    Google Scholar 

  101. Korb LJ, Olson DL (eds) (1987) Metals handbook, vol 13: Corrosion. ASM International, pp 1277–1280

    Google Scholar 

  102. Hudson RM (1964) Hydrogen absorption by and dissolution rate of low-carbon steel in sulfuric, hydrochloric, phosphoric and nitric acids. Corrosion 20(8):245t–251t

    Article  Google Scholar 

  103. Beloglazov S (2013) Electrochemical hydrogen and metals: absorption, diffusion and embrittlement prevention in corrosion and electroplating (chemistry research and applications). Nova Science Publishers

    Google Scholar 

  104. Messer B et al (2008) Role of nascent hydrogen in refinery corrosion. Paper 08549 presented at the CORROSION 2008 conference. NACE International, Houston, TX, USA

    Google Scholar 

  105. Rachinsky V, Smialovski M (1969) Influence of different factors on hydrogen embrittlement of steel and iron. Zaschita metallov (Protection of Metals) 5(5):482–490

    Google Scholar 

  106. Groysman A (2010) Corrosion for everybody. Springer, Dordrecht

    Book  Google Scholar 

  107. Tuttle RN (1970) Selection of materials for use in a sour gas environment. Mater Protect 9(4):11–14

    Google Scholar 

  108. Warren D, Beckman GW (1957) Sulfide corrosion cracking of high strength bolting materials. Corrosion 13(10):33–48

    Article  Google Scholar 

  109. Whiteman MB, Troiano AR (1965) Hydrogen embrittlement of austenitic stainless steel. Corrosion 21(2):53–56

    Article  Google Scholar 

  110. Owczarek E, Zakroczymski T (2000) Hydrogen transport in a duplex stainless steel. Acta Mater 48(12):3059–3070

    Article  Google Scholar 

  111. Parvathavarthini N, Saroja S (2001) Studies on hydrogen permeability of 2.25 % Cr-1 % Mo ferritic steel: correlation with microstructure. J Nucl Mater 288(2–3):187–196

    Article  Google Scholar 

  112. NACE International Publication 8X194 (2006) Materials and fabrication practices for new pressure vessels used in wet H2S refinery service. NACE International, Houston, TX, USA

    Google Scholar 

  113. NACE Standard MR0103-2007 (2007) Materials resistant to sulfide stress cracking in corrosive petroleum refining environments. NACE International, Houston, TX, USA

    Google Scholar 

  114. ANSI/NACE MR0175/ISO 15156 (2009) Petroleum and natural gas industries—materials for use in H2S-containing environments in oil and gas production. NACE International, Houston, TX, USA

    Google Scholar 

  115. Smialowski M (1962) Hydrogen in steel. Pergamon Press Ltd, Warszawa

    Google Scholar 

  116. Catastrophic Rupture of Heat Exchanger (Seven Fatalities) Tesoro Anacortes Refinery (2010) Report 2010-08-I-WA. US Chemical and Investigation Board, Washington

    Google Scholar 

  117. Pishko R, McKimpson M, Shewmon PG (1979) The effect of steelmaking on the hydrogen attack of carbon steel. Metall Mater Trans A 10(7):887–894

    Article  Google Scholar 

  118. Inglis NP, Andrews W (1933) Effect of H on various steels at 150–500 °C and 200–250 atm. J Iron Steel Inst 128:383

    Google Scholar 

  119. Schuyten J (1947) Hydrogen attack on metals at high temperatures and pressures. Corr Mater Perform 4(5):13

    Google Scholar 

  120. Nelson GA (1949) Hydrogenation plant steels. In: Proceedings API 29M(III):163-174. American Petroleum Institute, Washington

    Google Scholar 

  121. Api RP 941 (2008) Steels for hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants, 7th edn. American Petroleum Institute, Washington

    Google Scholar 

  122. Nelson GA (1951) Metals for high-pressure hydrogenation plants. Trans Am Soc Mech Eng 73(2):205

    Google Scholar 

  123. Nelson GA (1968) Corrosion data survey. NACE, Houston, TX, USA

    Google Scholar 

  124. Shih HM, Johnson HH (1982) A model calculation of the Nelson curves for hydrogen attack. Acta Metall 30:537–545

    Article  Google Scholar 

  125. Parthasarathy TA (1985) Mechanisms of hydrogen attack of carbon and 2.25Cr-1Mo steels. Acta Metall 33(9):1673–1681

    Article  Google Scholar 

  126. Van der Burg MWD, Van der Giessen E, Tvergaard V (1998) A continuum damage analysis of hydrogen attack in a 2.25Cr-1Mo pressure vessel. Mater Sci Eng A241:1–13

    Article  Google Scholar 

  127. Manna G, Castello P, Harskamp F (2007) Testing of welded 2.25Cr-1Mo steel in hot, high-pressure hydrogen under creep conditions. Eng Fract Mech 74:956–968

    Article  Google Scholar 

  128. Shewmon PG (1976) Hydrogen attack of carbon steel. Metall Trans A, Vol 7A February

    Google Scholar 

  129. API TR (Technical Report) 941 (2008) The Technical Basis Document for API RP 941, Edition 8, American Petroleum Institute, Washington

    Google Scholar 

  130. Groysman A (2009) Corrosion monitoring. Corr Rev 27(4–5):205–343

    Google Scholar 

  131. Birring AS, Bartlett ML, Kawano K (1989) Ultrasonic detection of hydrogen attack in steels. Corrosion 45(3):259–263

    Article  Google Scholar 

  132. Birring AS, Riethmuller M, Kawano K (2005) Ultrasonic techniques for detection of high temperature hydrogen attack. Mater Eval February 110–115

    Google Scholar 

  133. Revie RW (ed) (2006) Uhlig’s corrosion handbook. Wiley-Interscience, Wiley

    Google Scholar 

  134. ANSI/NACE Standard TM 0284–2003 (2003) Standard test method evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International, Houston, TX, USA

    Google Scholar 

  135. Jack BL (1999) Alternatives to HIC steels in sour refinery environments. Paper 99425 presented at the NACE CORROSION/99 conference. NACE International, Houston, TX, USA

    Google Scholar 

  136. Danis JI (1999) Wet H2S Cracking—A Refinerʼs Experience With HIC Resistant Steels. Paper 99431 presented at the NACE CORROSION/99 conference. NACE International, Houston, TX, USA

    Google Scholar 

  137. ASTM A370–15 (2015) Standard test methods and definitions for mechanical testing of steel products. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  138. ISO 10423:2009 (2009) Petroleum and natural gas industries—Drilling and production equipment—Wellhead and christmas tree equipment

    Google Scholar 

  139. NACE Standard SP 0472-2008 (2008) Standard practice, methods and controls to prevent in-service environmental cracking of carbon steel weldments in corrosive petroleum refining environments. NACE International, Houston, TX, USA

    Google Scholar 

  140. White RA, Ehmke EF (1991) Materials selection for refineries and associated facilities. NACE

    Google Scholar 

  141. Groysman A, Erdman N (2000) A study of corrosion of mild steel in mixtures of petroleum distillates and electrolytes. Corrosion 56(12):1266–1271

    Article  Google Scholar 

  142. Groysman A (2005) Corrosion of aboveground fuel storage tanks. Mater Perform 44(9):44–48

    Google Scholar 

  143. Bottoms RR (1930) Process for separating acidic gases. US Patent 1,783,901

    Google Scholar 

  144. Gutzeit J, Merrick RD, Scharfstein LR (1987) Corrosion in petroleum refining and petrochemical operations. In: Corrosion, vol 13, ASM Handbook, ASM International, pp 1262–1287

    Google Scholar 

  145. DuPart MS, Bacon TR, Edwards DJ (1993) Understanding corrosion in alkanolamine gas treating plants. Hydrocarbon Processing. Part 1, 72(4):75–79. Part 2, 72(5):89–94

    Google Scholar 

  146. Liu HJ, Dean JW, Bosen SF (1995) Neutralization technology to reduce corrosion from heat stable amine salts. Paper 572 presented at the NACE conference Corrosion/95, NACE International, Houston, TX, USA

    Google Scholar 

  147. Gregory RA, Cohen MF (1988) Removal of salts from aqueous alkanolamine using an electrodialysis cell with ion exchange membrane. European Patent 286 143

    Google Scholar 

  148. Burns D, Gregory RA (1995) The UCARSEP™ process for on-line removal of non-regenerable salts form amine units. Paper presented at the Laurance Reid gas conditioning conference, The University of Oklahoma, Norman, OK, USA

    Google Scholar 

Recommended Literature

  1. Pohl HA (1962) Solubility of iron sulfides. J Chem Eng Data 7(2):295–306

    Article  Google Scholar 

  2. Rebak RB (2011) Sulfidic corrosion in refineries—a review. Corr Rev 29:123–133, Walter de Gruyter, Berlin

    Google Scholar 

  3. Farrel D, Roberts L (2010) A study of high temperature sulfidation under actual process conditions. Paper 10358 presented at the NACE CORROSION 2010 conference, NACE International, Houston, TX, USA

    Google Scholar 

  4. Niccolls EH et al (2008) High Temperature Sulfidation Corrosion in Refining. Paper presented at the 17th International Corrosion Congress, October 6–10, 2008, Las Vegas, NACE International, Houston, TX, USA

    Google Scholar 

  5. Hucińska J (2006) Influence of sulfur on high temperature degradation of steel structures in the refinery industry. Adv Mater Sci 6(1):16–25

    Google Scholar 

  6. Tebbal S, Kane RD (1996) Review of critical factors affecting crude corrosivity. Paper 607 presented at the CORROSION/96, NACE International, Houston, TX, USA

    Google Scholar 

  7. Craig HL (1996) Temperature and velocity effects in naphthenic acid corrosion. Paper 603 presented at the CORROSION/96. NACE International, Houston, TX, USA

    Google Scholar 

  8. Turnbull A, Slavcheva E, Shone B (1998) Factors controlling naphthenic acid corrosion. Corrosion 54(11):922–930

    Article  Google Scholar 

  9. Slavcheva E, Shone B, Thurnbull A (1999) Review of naphthenic acid corrosion in oil refining. Br Corr J 34(2):125–131

    Article  Google Scholar 

  10. Wu XQ et al (2004) Study on high-temperature naphthenic acid corrosion and erosion-corrosion of aluminized carbon steel. J Mater Sci 39:975–985

    Article  Google Scholar 

  11. Wu XQ et al (2004) Erosion-corrosion of various oil-refining materials in naphthenic acid. Wear 256:133–144

    Article  Google Scholar 

  12. Babaian-Kibala E et al (1993) Naphthenic acid corrosion in a refinery setting. Paper 631 presented at the CORROSION/93, NACE International, Houston, TX, USA

    Google Scholar 

  13. www.bjservices.com. BJ Chemical Services “RNB 40218 Naphthenic Acid Corrosion Inhibitor Prevents High Temperature Corrosion”

  14. Haynes D (2006) Naphthenic acid bearing refinery feedstocks and corrosion abatement, AIChE—Chicago Symposium

    Google Scholar 

  15. Laredo GC et al (2004) Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oil. Fuel 83:1689–1695

    Article  Google Scholar 

  16. Jayaraman A, Singh H, Lefebvre Y (1986) Rev Inst Fr Pet 41:265

    Article  Google Scholar 

  17. Zeinalov EB, Abbasov VM, Alieva LI (2009) Petroleum acids and corrosion. Pet Chem 49(3):185–192

    Article  Google Scholar 

  18. Laredo GC et al (2004) Identification of naphthenic acids and other corrosivity-related characteristics in crude oil and vacuum gas oils from a mexican refinery. Energy Fuels 18:1687–1694

    Article  Google Scholar 

  19. Rangarajan P, Holmes F, Randolph B (2006) Effect of naphthenic acid structure on corrosion. Presentation at the 2006 Spring Meeting & 2nd Global Congress on Process Safety, 9nd Topical Conference on Refinery Processing, AIChE

    Google Scholar 

  20. Yépez O (2005) Influence of different sulfur compounds on corrosion due to naphthenic acid. Fuel 84(1):97–104

    Article  Google Scholar 

  21. Yépez O (2007) On the chemical reaction between carboxylic acids and iron, including the special case of naphthenic acid. Fuel 86(7–8):1162–1168

    Article  Google Scholar 

  22. Kevrešan S et al (2003) Effect of naphthenic acids on formation of adventitious roots in sunflower cuttings. HELIA 26(39):75–82

    Article  Google Scholar 

  23. Claesen C, Lordo SA, Scattergood G (2007) Chemical inhibition of high temperature sulfidic corrosion in lab evaluations and petroleum refinery applications. Paper presented at the EUROCORR 2007, Freiburg, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alec Groysman .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Groysman, A. (2017). Corrosion Problems and Solutions at Oil Refinery and Petrochemical Units. In: Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry. Topics in Safety, Risk, Reliability and Quality, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-45256-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45256-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45254-8

  • Online ISBN: 978-3-319-45256-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics