Skip to main content

Harnessing the Power of the Human Immune System via Multi-omic Immune Profiling in Stroke Treatment and Recovery

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Abstract

Precision health is an unrealized opportunity in the practice and care of stroke patients. To achieve truly person-centered care as the Precision Medicine Initiative (PMI) outlines, a new approach to stroke research is necessary. Multi-omic profiling of the immune system response to human stroke provides a significant advantage over single system and/or multibiomarker analyses. By combining powerful ‘omic’ technologies with machine learning and pattern recognition for interpretation of this multi-omic data, we are better able to understand the complexity of stroke physiology. These measurements allow for new methods in the diagnosis, treatment stratification, and design of personalized approaches to stroke recovery. The foundation by which these novel approaches can be utilized to understand human stroke complexity and translated into programs of research and clinical practice paradigms is being created, and will ultimately change the way we diagnosis and treat stroke patients. This review will briefly outline current approaches and how to leverage these discoveries to achieve person-centered stroke care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding K, Wu S, Ying W, Pan Q, Li X, Zhao D et al (2015) Leveraging a multi-omics strategy for prioritizing personalized candidate mutation-driver genes: a proof-of-concept study. Sci Rep 5:17564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim ST, Lee J, Hong M, Park K, Park JO, Ahn T et al (2015) The NEXT-1 (Next generation pErsonalized tX with mulTi-omics and preclinical model) trial: prospective molecular screening trial of metastatic solid cancer patients, a feasibility analysis. Oncotarget 6(32):33358–33368

    PubMed  PubMed Central  Google Scholar 

  3. Pineda S, Gomez-Rubio P, Picornell A, Bessonov K, Marquez M, Kogevinas M et al (2015) Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum Hered 79(3-4):124–136

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Xiao Y, Ping Y, Li J, Zhao H, Li F et al (2014) Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer. PLoS One 9(8), e104282

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sandercock PA (2015) Does personalized medicine exist and can you test it in a clinical trial? Int J Stroke 10(7):994–999

    Article  PubMed  Google Scholar 

  6. Yu KH, Snyder M (2016) Omics profiling in precision oncology. Mol Cell Proteomics 15(8):2525–2536

    Article  CAS  PubMed  Google Scholar 

  7. Greenplate AR, Johnson DB, Ferrell PB Jr, Irish JM (2016) Systems immune monitoring in cancer therapy. Eur J Cancer 61:77–84

    Article  CAS  PubMed  Google Scholar 

  8. Boskovic A, Belada N, Knezevic B (2014) Prognostic value of heart rate variability in post-infarction patients. Vojnosanit Pregl 71(10):925–930

    Article  PubMed  Google Scholar 

  9. Song T, Qu XF, Zhang YT, Cao W, Han BH, Li Y et al (2014) Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction. BMC Cardiovasc Disord 14:59

    Article  PubMed  PubMed Central  Google Scholar 

  10. Benoist C, Germain RN, Mathis D (2006) A plaidoyer for ‘systems immunology’. Immunol Rev 210:229–234

    Article  CAS  PubMed  Google Scholar 

  11. Lo EH, Ning M (2016) Mechanisms and challenges in translational stroke research. J Investig Med 64(4):827–829

    Article  PubMed  Google Scholar 

  12. Famakin BM (2014) The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis 5(5):307–326

    PubMed  PubMed Central  Google Scholar 

  13. Brooks SD, Spears C, Cummings C, VanGilder RL, Stinehart KR, Gutmann L et al (2014) Admission neutrophil-lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J Neurointerv Surg 6(8):578–583

    Article  PubMed  Google Scholar 

  14. Celikbilek A, Ismailogullari S, Zararsiz G (2014) Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J Clin Lab Anal 28(1):27–31

    Article  CAS  PubMed  Google Scholar 

  15. Holt RA (2015) Immunogenomics: a foundation for intelligent immune design. Genome Med 7(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martino D, Allen K (2015) Meeting the challenges of measuring human immune regulation. J Immunol Methods 424:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Amantea D, Bagetta G (2016) Drug repurposing for immune modulation in acute ischemic stroke. Curr Opin Pharmacol 26:124–130

    Article  CAS  PubMed  Google Scholar 

  18. Fu Y, Liu Q, Anrather J, Shi FD (2015) Immune interventions in stroke. Nat Rev Neurol 11(9):524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen S, Liu YG, Scott E (2016) Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis. Regen Eng Transl Med 2(1):37–50

    Article  PubMed  Google Scholar 

  20. Wu CC, Chen BS (2016) Key immune events of the pathomechanisms of early cardioembolic stroke: multi-database mining and systems biology approach. Int J Mol Sci 17(3):305

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wong YH, Wu CC, Lai HY, Jheng BR, Weng HY, Chang TH et al (2015) Identification of network-based biomarkers of cardioembolic stroke using a systems biology approach with time series data. BMC Syst Biol 9(Suppl 6):S4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bielekova B, Vodovotz Y, An G, Hallenbeck J (2014) How implementation of systems biology into clinical trials accelerates understanding of diseases. Front Neurol 5:102

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ren C, Guingab-Cagmat J, Kobeissy F, Zoltewicz S, Mondello S, Gao M et al (2014) A neuroproteomic and systems biology analysis of rat brain post intracerebral hemorrhagic stroke. Brain Res Bull 102:46–56

    Article  CAS  PubMed  Google Scholar 

  24. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konig IR, Auerbach J, Gola D, Held E, Holzinger ER, Legault MA et al (2016) Machine learning and data mining in complex genomic data-a review on the lessons learned in Genetic Analysis Workshop 19. BMC Genet 17(Suppl 2):1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrone AB, O’Connell GC, Regier MD, Chantler PD, Simpkins JW, Barr TL (2016) The role of Arginase 1 in post-stroke immunosuppression and ischemic stroke severity. Transl Stroke Res 7(2):103–110

    Article  CAS  PubMed  Google Scholar 

  27. Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. The American Statistician. pp 129-133. http://dx.doi.org/10.1080/00031305.2016.1154108

  28. Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13(5):1445–1454

    Article  CAS  PubMed  Google Scholar 

  29. Yip KY, Cheng C, Gerstein M (2013) Machine learning and genome annotation: a match meant to be? Genome Biol 14(5):205

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karlinski M, Gluszkiewicz M, Czlonkowska A (2015) The accuracy of prehospital diagnosis of acute cerebrovascular accidents: an observational study. Arch Med Sci 11(3):530–535

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newman-Toker DE, Ernest M, Ernest V, Rosanna C, Hines AL (2014) Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample. Diagnosis 1(2):155–166. doi:10.1515/dx-2013-0038

    Article  Google Scholar 

  32. National Academies of Sciences E and Medicine (2015) Improving diagnosis in health care. The National Academies Press, Washington, DC

    Google Scholar 

  33. Gelabert MA (1990) [Infections caused by gram positive bacteria: a new epidemics in patients with positive anti-HIV antibodies and drug addicts]. Arch Esp Urol 43(2):103–105

    Google Scholar 

  34. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A et al (2010) Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology 75(11):1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barr TL, VanGilder R, Rellick S, Brooks SD, Doll DN, Lucke-Wold AN et al (2015) A genomic profile of the immune response to stroke with implications for stroke recovery. Biol Res Nurs 17(3):248–256

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Luo X, Huang X, Ning Q, Xie M, Wang W (2014) Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J Neurochem 131(3):383–394

    Article  CAS  PubMed  Google Scholar 

  37. Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP et al (2013) The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 4:413

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peterson-Burch FR-R, K; Barr, TL (2017) Rethinking Recovery: Incorporating Holistic Nursing Perspectives in Post-Stroke Care, Holistic Nursing Practice, In Press, 2017

    Google Scholar 

  39. Hatfield I, Allison A, Flight L, Julious SA, Dimairo M (2016) Adaptive designs undertaken in clinical research: a review of registered clinical trials. Trials 17(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M et al (2012) Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J Clin Oncol 30(26):3242–3249

    Article  PubMed  PubMed Central  Google Scholar 

  41. Printz C (2013) I-SPY 2 may change how clinical trials are conducted: researchers aim to accelerate approvals of cancer drugs. Cancer 119(11):1925–1927

    Article  PubMed  Google Scholar 

  42. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Y, Guo B, Munsell M, Lu K, Jazaeri A (2016) MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents. Stat Med. doi:10.1002/sim.6971

    PubMed Central  Google Scholar 

  44. Kim ES, Herbst RS, Wistuba II, Lee JJ, Blumenschein GR Jr, Tsao A et al (2011) The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1(1):44–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antoniou M, Jorgensen AL, Kolamunnage-Dona R (2016) Biomarker-guided adaptive trial designs in Phase II and Phase III: a methodological review. PLoS One 11(2), e0149803

    Article  PubMed  PubMed Central  Google Scholar 

  46. Collette L, Tombal B (2015) N-of-1 trials in oncology. Lancet Oncol 16(8):885–886

    Article  PubMed  Google Scholar 

  47. Vohra S, Shamseer L, Sampson M, Bukutu C, Schmid CH, Tate R, CONSORT extension for reporting N-of-1 trials (CENT) et al (2015) Statement. J Clin Epidemiol 2015

    Google Scholar 

  48. Sieverink F, Siemons L, Braakman-Jansen A, van Gemert-Pijnen L (2016) Internet of things & personalized healthcare. Stud Health Technol Inform 221:129

    PubMed  Google Scholar 

  49. Godbehere P, Wareing P (2014) Hypertension assessment and management: role for digital medicine. J Clin Hypertens (Greenwich) 16(3):235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taura L. Barr Ph.D., R.N., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barr, T.L., Gionis, V., Giersch, R. (2017). Harnessing the Power of the Human Immune System via Multi-omic Immune Profiling in Stroke Treatment and Recovery. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics