Skip to main content

Uniqueness of Equilibria in Atomic Splittable Polymatroid Congestion Games

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Included in the following conference series:

  • 1018 Accesses

Abstract

We study uniqueness of Nash equilibria in atomic splittable congestion games and derive a uniqueness result based on polymatroid theory: when the strategy space of every player is a bidirectional flow polymatroid, then equilibria are unique. Bidirectional flow polymatroids are introduced as a subclass of polymatroids possessing certain exchange properties. We show that important cases such as base orderable matroids can be recovered as a special case of bidirectional flow polymatroids. On the other hand we show that matroidal set systems are in some sense necessary to guarantee uniqueness of equilibria: for every atomic splittable congestion game with at least three players and non-matroidal set systems per player, there is an isomorphic game having multiple equilibria. Our results leave a gap between base orderable matroids and general matroids for which we do not know whether equilibria are unique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The formal definition of bidirectional flow polymatroids appears in Definition 1.

  2. 2.

    The term “interweaving” has been introduced by Ackermann et al. [1, 2].

References

  1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 1–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altman, E., Basar, T., Jimnez, T., Shimkin, N.: Competitive routing in networks with polynomial costs. IEEE Trans. Automat. Control 47, 92–96 (2002)

    Article  MathSciNet  Google Scholar 

  4. Beckmann, M., McGuire, C., Winsten, C.: Studies in the Economics and Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  5. Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.: Equilibria of atomic flow games are not unique. Math. Oper. Res. 41(1), 92–96 (2015)

    MathSciNet  Google Scholar 

  6. Brualdi, R.: Exchange systems, matchings, and transversals. J. Comb. Theor. 5(3), 244–257 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brualdi, R., Scrimger, E.: Comments on bases in dependence structures. Bull. Aust. Math. Soc. 1, 161–167 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks. Oper. Res. 57(6), 1421–1437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujishige, S., Goemans, M., Harks, T., Peis, B.: Matroids are immune to Braess paradox (2015). http://arxiv.org/abs/1504.07545F

  10. Harks, T.: Stackelberg strategies and collusion in network games with splittable flow. Theor. Comput. Syst. 48, 781–802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harks, T., Klimm, M., Peis, B.: Resource competition on integral polymatroids. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 189–202. Springer, Heidelberg (2014)

    Google Scholar 

  12. Harks, T., Oosterwijk, T., Vredeveld, T.: A logarithmic approximation for polymatroid matroid congestion games. Unpublished manuscript (2014)

    Google Scholar 

  13. Harks, T., Peis, B.: Resource buying games. Algorithmica 70(3), 493–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harks, T., Timmermans, V.: Uniqueness of equilibria in atomic splittable polymatroid congestion games (2015). arXiv, abs/1512.01375

    Google Scholar 

  15. Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C.-C.: Collusion in atomic splittable routing games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 564–575. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Meunier, F., Pradeau, T.: The uniqueness property for networks with several origin-destination pairs. Eur. J. Oper. Res. 237(1), 245–256 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Milchtaich, I.: Topological conditions for uniqueness of equilibrium in networks. Math. Oper. Res. 30(1), 225–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi-user communication networks. IEEE/ACM Trans. Netw. 1, 510–521 (1993)

    Article  Google Scholar 

  21. Pym, S., Perfect, H.: Submodular function and independence structures. J. Math. Anal. Appl. 30(1), 1–31 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richman, O., Shimkin, N.: Topological uniqueness of the Nash equilibrium for selfish routing with atomic users. Math. Oper. Res. 32(1), 215–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roughgarden, T., Schoppmann, F.: Local smoothness and the price of anarchy in splittable congestion games. J. Econom. Theor. 156, 317–342 (2015). Computer Science and Economic Theory

    Article  MathSciNet  MATH  Google Scholar 

  24. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  25. Wallacher, C., Zimmermann, T.: A polynomial cycle canceling algorithm for submodular flows. Math. Program. 86(1), 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wardrop, J.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. 1(Pt. II), 325–378 (1952)

    Google Scholar 

Download references

Acknowledgements

We thank Umang Bhaskar, Britta Peis and Satoru Fujishige for fruitful discussions. We also thank Neil Olver for pointing out the connection to base orderable matroids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerle Timmermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Harks, T., Timmermans, V. (2016). Uniqueness of Equilibria in Atomic Splittable Polymatroid Congestion Games. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics