Skip to main content

Modelling Avalanches in Martensites

  • Chapter
  • First Online:
Avalanches in Functional Materials and Geophysics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Solids subject to continuous changes of temperature or mechanical load often exhibit discontinuous avalanche-like responses. For instance, avalanche dynamics have been observed during plastic deformation , fracture, domain switching in ferroic materials or martensitic transformations. The statistical analysis of avalanches reveals a very complex scenario with a distinctive lack of characteristic scales. Much effort has been devoted in the last decades to understand the origin and ubiquity of scale-free behaviour in solids and many other systems. This chapter reviews some efforts to understand the characteristics of avalanches in martensites through mathematical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A snap-spring in elastic materials can be viewed as the analogue of a spin in magnetic materials.

  2. 2.

    Meaning that the boundaries of the neighbourhood do not belong to the neighbourhood itself.

  3. 3.

    Typical states have magnetisation m that can be represented by an exponentially large number of microscopic spin configurations, \(\mathbf {s}\).

  4. 4.

    See [76] for an explicit calculation of the spin-spin correlation function near the OD transition.

References

  1. D.M. Dimiduk, C. Woodward, R. Lesar, M.D. Uchic, Scale-free intermittent flow in crystal plasticity. Science (New York) vol. 312, pp. 1188–1190. (2006). ISSN: 0036-8075

    Google Scholar 

  2. M.C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.R. Grasso, Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001)

    Article  ADS  Google Scholar 

  3. A. Petri, G. Paparo, A. Vespignani, A. Alippi, M. Costantini, Experimental evidence for critical dynamics in microfracturing processes. Phys. Rev. Lett. 73, 3423–3426 (1994). ISSN: 0031-9007

    Article  ADS  Google Scholar 

  4. J. Baró et al., Statistical similarity between the compression of a porous material and earthquakes. Phys. Rev. Lett. 110(8), 088702 (2013). doi:10.1103/PhysRevLett.110.088702

  5. G. Bertotti, I.D. Mayergoyz, G. Durin, S. Zapperi, The Science of Hysteresis (Elsevier, Amsterdam, 2006), pp. 181–267. doi:10.1016/B978-012480874-4/50014-2. http://www.sciencedirect.com/science/article/pii/B9780124808744500142

  6. E.K. Salje, K.A. Dahmen, Crackling Noise in Disordered Materials. Annu. Rev. Condens. Matter Phys. 5, 233–254 (2014). ISSN: 1947–5454

    Google Scholar 

  7. E. Vives et al., Distributions of avalanches in martensitic transformations. Phys. Rev. Lett. 72, 1694–1697 (1994). ISSN: 0031-9007

    Google Scholar 

  8. F.-J. Pérez-Reche, B. Tadić, L. Mañosa, A. Planes, E. Vives, Driving rate effects in Avalanche-mediated first-order phase transitions. Phys. Rev. Lett. 93, 195701 (2004). ISSN: 0031-9007

    Google Scholar 

  9. U. Chandni, A. Ghosh, H.S. Vijaya, S. Mohan, Criticality of Tuning in Athermal Phase Transitions. Phys. Rev. Lett. 102, 25701 (2009)

    Article  ADS  Google Scholar 

  10. M. Carmen Gallardo et al., Avalanche criticality in the martensitic transition of \(\rm Cu\mathit{_{67.64}\rm Zn}_{16.71}\rm Al_{15.65}\) shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81, 174102 (2010). ISSN: 1098-0121

    Google Scholar 

  11. X. Balandraud, N. Barrera, P. Biscari, M. Grédiac, G. Zanzotto, Strain intermittency in shape-memory alloys. Phys. Rev. B 91, 174111 (2015)

    Article  ADS  Google Scholar 

  12. Y. Ben-Zion, Collective behavior of earthquakes and faults: Continuumdiscrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev. Geophys. 46, RG4006 (2008). ISSN: 8755-1209

    Google Scholar 

  13. D. Sornette, Why Stock Markets Crash (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  14. R.V. Solé, S.C. Manrubia, M. Benton, P. Bak, Self-similarity of extinction statistics in the fossil record. Nature 388, 764–767 (1997). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  15. C.J. Rhodes, H.J. Jensen, R.M. Anderson, On the critical behaviour of simple epidemics. Proceedings. Biological sciences. R. Soc. 264, 1639–1646 (1997). ISSN: 0962-8452

    Article  Google Scholar 

  16. D. Plenz (ed.), Criticality in Neural Systems (Wiley, New York, 2014). doi:10.1002/9783527651009. http://onlinelibrary.wiley.com/book/10.1002/9783527651009. ISBN: 9783527651009

  17. F. Ginelli et al., Intermittent collective dynamics emerge from conflicting imperatives in sheep herds, in Proceedings of the National Academy of Sciences, 12729–12734 (2015). ISSN: 0027-8424

    Google Scholar 

  18. M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2004)

    Article  ADS  Google Scholar 

  19. L. Gil, D. Sornette, Landau-Ginzburg theory of self-organized criticality. Phys. Rev. Lett. 76, 3991–3994 (1996)

    Google Scholar 

  20. H.L.D. de S Cavalcante, M. Oriá, D. Sornette, E. Ott, D.J. Gauthier, Predictability and suppression of extreme events in a chaotic system. Phys. Rev. Lett. 111, 198701 (2013)

    Google Scholar 

  21. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1983)

    Google Scholar 

  22. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, Reading, MA, 1992)

    MATH  Google Scholar 

  23. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  24. P. Bak, How Nature Works: the science of self-organized criticality (Oxford University Press, Oxford, 1997)

    MATH  Google Scholar 

  25. J.P. Sethna, K.A. Dahmen, C.R. Myers, Crackling noise. Nature 410, 242–250 (2001). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  26. D.S. Fisher, Collective transport in random media: from superconductors to earthquakes. Phys. Rep. 301, 113–150 (1998). ISSN: 03701573

    Article  ADS  Google Scholar 

  27. F.-J. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Training-Induced Criticality in Martensites. Phys. Rev. Lett. 99, 075501 (2007). ISSN: 0031-9007

    Article  ADS  Google Scholar 

  28. F.J. Pérez-Reche, C. Triguero, L. Truskinovsky, G. Zanzotto, Origin of scale-free intermittency in structural first-order phase transitions. arXiv:1606.00607 (2016)

  29. K. Otsuka, C.M. Wayman (eds.), Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  30. L. Mañosa, A. Planes, M. Acet, Advanced materials for solid-state refrigeration. J. Mat. Chem. A 1, 4925 (2013). ISSN: 2050-7488

    Google Scholar 

  31. J, Christian, The theory of transformations in metals and alloys, pp. 1102–1113 (Elsevier, Amsterdam, 2012). doi:10.1016/B978-008044019-4/50031-3. http://www.sciencedirect.com/science/article/pii/B9780080440194500313. ISBN: 9780080440194

  32. G. Bertotti, I.D. Mayergoyz, J. Ortin, A. Planes, A, L. Delaey, The Science of Hysteresis, pp. 467–553 (Elsevier, Amsterdam, 2006). doi:10.1016/B978-012480874-4/50023-3. http://www.sciencedirect.com/science/article/pii/B9780124808744500233. ISBN: 9780124808744

  33. L. Carrillo, L. Mañosa, J. Ortín, A. Planes, E. Vives, Experimental Evidence for Universality of Acoustic Emission Avalanche Distributions during Structural Transitions. Phys. Rev. Lett. 81, 1889–1892 (1998)

    Article  ADS  Google Scholar 

  34. J. Baró, E. Vives, Analysis of power-law exponents by maximum-likelihood maps. Phys. Rev. E 85, 066121 (2012)

    Google Scholar 

  35. L. Carrillo, J. Ortín, Avalanches in the growth of stress-induced martensites. Phys. Rev. B 56, 11508 (1997). ISSN: 0163–1829

    Google Scholar 

  36. R.J. Harrison, E.K.H. Salje, The noise of the needle: Avalanches of a single progressing needle domain in LaAlO[sub\(_3\)]. Appl. Phys. Lett. 97, 021907 (2010). ISSN: 00036951

    Google Scholar 

  37. R. J. Harrison, E.K.H. Salje, Ferroic switching, avalanches, and the Larkin length: Needle domains in LaAlO3. Appl. Phys. Lett. 99, 1077–3118 (2011). ISSN: 0003-6951

    Google Scholar 

  38. E.K.H. Salje, X. Ding, Z. Zhao, T. Lookman, A. Saxena, Thermally activated avalanches: Jamming and the progression of needle domains. Phys. Rev. B 83, 104109 (2011)

    Article  ADS  Google Scholar 

  39. X. Ding et al., Dynamically strained ferroelastics: Statistical behavior in elastic and plastic regimes. Phys. Rev. B 87, 094109 (2013)

    Google Scholar 

  40. E. Vives, J. Goicoechea, J. Ortín, A. Planes, Universality in models for disorder-induced phase transitions. Phys. Rev. E 52, R5–R8 (1995). ISSN: 1063-651X

    Google Scholar 

  41. J. Goicoechea, J.A. Ortín, Random field 3-State spin model to simulate hysteresis and avalanches in martensitic transformations. J. Phys. IV 5, C2-71–C2-76 (1995)

    Google Scholar 

  42. S.R. Shenoy, T. Lookman, Strain pseudospins with power-law interactions: Glassy textures of a cooled coupled-map lattice. Phys. Rev. B 78, 144103 (2008)

    Article  ADS  Google Scholar 

  43. R. Vasseur, T. Lookman, Effects of disorder in ferroelastics: A spin model for strain glass. Phys. Rev. B 81, 094107 (2010)

    Google Scholar 

  44. D. Sherrington, in Disorder and Strain-Induced Complexity in Functional Materials, ed. by T. Kakeshita, T. Fukuda, A. Saxena, A. Planes (Springer, Heidelberg, 2012), pp. 177–199. doi:10.1007/978-3-642-20943-7-10. ISBN: 978-3-642-20943-7

  45. B. Cerruti, E. Vives, Random-field Potts model with dipolarlike interactions:hysteresis, avalanches, and microstructure. Phys. Rev. B 77, 064114 (2008). ISSN: 1098-0121

    Article  ADS  Google Scholar 

  46. H. Ji et al., M.O. Robbins, Percolative, self-affine, and faceted domain growth in random three-dimensional magnets. Phys. Rev. B 46, 14519 (1992). ISSN: 0163-1829

    Google Scholar 

  47. J.P. Sethna et al., Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett 70, 12 (1993). ISSN: 0031-9007

    Google Scholar 

  48. F.J. Pérez-Reche et al., Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales. Phys. Rev. B 69, 064101 (2004). ISSN: 1098-0121

    Google Scholar 

  49. F.J. Pérez-Reche, E. Vives, L. Mañosa, A. Planes, Acoustic emission studyof martensitic transition kinetics in Cu-based shape-memory alloys. J. Phys. IV 112, 597–600 (2003)

    Google Scholar 

  50. G. Krauss, Fine structure of austenite produced by the reverse martensitic transformation. Acta Metall. 11, 499–509 (1963). ISSN: 00016160

    Google Scholar 

  51. J. Pons, F. Lovey, E. Cesari, Electron microscopy study of dislocations associated with thermal cycling in a CuZnAl shape memory alloy. Acta Metallurgica et Materialia 38, 2733–2740 (1990). ISSN: 09567151

    Article  Google Scholar 

  52. T. Simon, A. Kröger, C. Somsen, A. Dlouhy, G. Eggeler, n the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Materialia 58, 1850–1860 (2010). ISSN: 13596454

    Article  Google Scholar 

  53. D.M. Norfleet et al., Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Materialia 57, 3549–3561 (2009). ISSN: 1359-6454

    Google Scholar 

  54. F.J. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Martensitic transformations: from continuum mechanics to spin models and automata. Contin. Mech. Thermodyn. 21, 17–26 (2009). ISSN: 0935-1175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. F.J. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Driving-induced crossover: From classical criticality to self-organized criticality. Phys. Rev. Lett. 101, 230601 (2008). ISSN: 00319007

    Google Scholar 

  56. J.L. Ericksen, Some phase transitions in crystals. Arch. Ration. Mech. Anal. 73, 99–124 (1980). ISSN: 0003-9527

    Google Scholar 

  57. I. Folkins, Functions of two-dimensional Bravais lattices. J. Math. Phys. 32, 1965 (1991). ISSN: 00222488

    Google Scholar 

  58. M. Pitteri, G. Zanzotto, Continuum Models for Phase Transitions and Twinning in Crystals (Chapman & Hall/CRC, Boca Raton, 2003)

    MATH  Google Scholar 

  59. S. Conti, G. Zanzotto, A variational model for reconstructive phase transformations in crystals, and their relation to dislocations and plasticity. Arch. Ration. Mech. Anal. 173, 69–88 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Bhattacharya, Microestructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  61. K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Crystal symmetry and the reversibility of martensitic transformations. Nature (London) 428, 55–59 (2004)

    Article  ADS  Google Scholar 

  62. G. Bertotti, I.D. Mayergoyz, J.P. Sethna, K.A. Dahmen, O. Perkovic, The Science of Hysteresis (Elsevier, Amsterdam, 2006), pp. 107–179. doi:10.1016/B978-012480874-4/50013-0. http://www.sciencedirect.com/science/article/pii/B9780124808744500130. ISBN: 9780124808744

  63. B. Koiller, M.O. Robbins, Morphology transitions in three-dimensional domain growth with Gaussian random fields. Phys. Rev. B 62, 5771–5778 (2000). ISSN: 0163-1829

    Google Scholar 

  64. E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, G. Tarjus, Capillary vcondensation in disordered porous materials: hysteresis versus equilibrium behavior. Phys. Rev. Lett. 87, 055701 (2001). ISSN: 0031-9007

    Google Scholar 

  65. T.P. Handford, F.J. Pérez-Reche, S.N. Taraskin, Capillary condensation in one-dimensional irregular confinement. Phys. Rev. E 88, 012139 (2013)

    Google Scholar 

  66. Q. Michard, J.P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings. Europ. Phys. J. B 47, 151–159 (2005). ISSN: 14346028

    Article  ADS  Google Scholar 

  67. J.S. Urbach, R.C. Madison, J.T. Markert, Interface depinning, Self- organized criticality, and the Barkhausen effect. Phys. Rev. Lett. 75, 276–279 (1995). ISSN: 0031-9007

    Article  ADS  Google Scholar 

  68. F.J. Pérez-Reche, E. Vives, Spanning avalanches in the three-dimensional Gaussian random-field Ising model with metastable dynamics: Field dependence and geometrical properties. Phys. Rev. B 70, 214422 (2004). ISSN: 1098-0121

    Article  ADS  Google Scholar 

  69. M. C. Kuntz, J.P. Sethna, Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models. Phys. Rev. B 62, 11699–11708 (2000). ISSN: 01631829

    Google Scholar 

  70. J.H. Carpenter, K.A. Dahmen, A.C. Mills, M.B. Weissman, Historyinduced critical bahavior in disordered systems. Phys. Rev. B 72, 052410 (2005)

    Google Scholar 

  71. R. Dickman, M.A. Muñoz, A. Vespignani, S. Zapperi, Paths to Self- Organized Criticality. Braz. J. Phys. 30, 27 (2000)

    Article  ADS  Google Scholar 

  72. M. Alava, Scaling in self-organized criticality from interface depinning. J. Phys.: Condens. Matter 14, 2353–2360 (2002)

    Google Scholar 

  73. K. Dahmen, J.P. Sethna, Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach. Phys. Rev. B 53, 14872 (1996). ISSN: 0163-1829

    Article  ADS  Google Scholar 

  74. O. Perković, K.A. Dahmen, J. P. Sethna, Disorder-induced critical phenomena in hysteresis: Numerical scaling in three and higher dimensions. Phys. Rev. B 59, 6106–6119 (1999). ISSN: 0163-1829

    Google Scholar 

  75. S. Sabhapandit, P. Shukla, D. Dhar, Distribution of Avalanche sizes in the hysteretic response of random field ising model on a Bethe lattice at zero temperature. J. Stat. Phys. 98, 103–129 (1999). ISSN: 00224715

    Google Scholar 

  76. T.P. Handford, F.-J. Perez-Reche, S.N. Taraskin, Exact spinspin correlation function for the zero-temperature random-field ising model. J. Stat. Mech.: Theor. Exp. 2012, P01001 (2012)

    Article  Google Scholar 

  77. T.P. Handford, F.J. Pérez-Reche, S.N. Taraskin, Mechanisms of evolution of avalanches in regular graphs. Phys. Rev. E 87, 062122 (2013)

    Google Scholar 

  78. T.P. Handford, F.J. Pérez-Reche, S.N. Taraskin, Zero-temperature random-field Ising model on a bilayered Bethe lattice. Phys. Rev. E 88, 022117 (2013)

    Google Scholar 

  79. I. Balog, M. Tissier, G. Tarjus, Same universality class for the critical behavior in and out of equilibrium in a quenched random field. Phys. Rev. B 89, 104201 (2014). ISSN: 10980121

    Article  ADS  Google Scholar 

  80. F.J. Pérez-Reche, E. Vives, Finite-size scaling analysis of the avalanches in the three-dimensional Gaussian random-field Ising model with metastable dynamics. Phys. Rev. B 67, 134421 (2003)

    Article  ADS  Google Scholar 

  81. I. Müller, P. Villaggio, A model for an elastic-plastic body. Arch. Rat. Mech. Anal. 65, 25–46 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  82. I, Müller, A model for a body with shape-memory. Arch. Ration. Mech. Anal. 70 (1979). doi:10.1007/BF00276382. http://link.springer.com/10.1007/BF00276382. ISSN: 0003-9527

  83. B. Fedelich, G. Zanzotto, Hysteresis in discrete systems of possibly interacting elements with a double-well energy. J. Nonlinear Sci. 2, 319–342 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. G. Puglisi, L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. L. Truskinovsky, A. Vainchtein, About the origin of the nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421–1446 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. G.Puglisi, Hysteresis in multi-stable lattices with non-local interactions. J. Mech. Phys. Solids 54, 2060–2088 (2006). ISSN: 00225096

    Google Scholar 

  87. E.K.H. Salje, Phase transitions in ferroelastic and co-elastic crystals (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  88. E.K.H. Salje, Ferroelastic Materials. Annu. Rev. Mater. Res. 42, 265–283 (2012)

    Article  ADS  Google Scholar 

  89. A.E. Jacobs, Solitons of the square-rectangular martensitic-transformation. Phys. Rev. B 31, 5984–5989 (1985). ISSN: 1550-235X

    Google Scholar 

  90. S. Shenoy, T. Lookman, A. Saxena, A. Bishop, Martensitic textures: Multiscale consequences of elastic compatibility. Phys. Rev. B 60, R12537–R12541 (1999). ISSN: 0163-1829

    Article  ADS  Google Scholar 

  91. T. Lookman, S.R. Shenoy, K.O. Rasmussen, A.R. Saxena, A. Bishop, Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 024114 (2002). ISSN: 0163-1829

    Google Scholar 

  92. R. Ahluwalia, G. Ananthakrishna, Power-law statistics for Avalanches in a martensitic transformation. Phys. Rev. Lett. 86, 4076–4079 (2001)

    Article  ADS  Google Scholar 

  93. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Influence of elastic anisotropy on structural nanoscale textures. Phys. Rev. Lett. 100, 165707 (2008)

    Article  ADS  Google Scholar 

  94. M. Pitteri, Reconciliation of local and global symmetries of crystals. J. Elast. 14, 175–190 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  95. J.M. Ball, R.D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 338, 389–450 (1992). ISSN: 1364-503X

    Article  ADS  MATH  Google Scholar 

  96. P. Tolédano, V. Dmitriev, Reconstructive Phase Transitions (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  97. D.M. Hatch, T. Lookman, A. Saxena, H.T. Stokes, Systematics of groupnonsubgroup transitions: Square to triangle transition. Phys. Rev. B 64, 060104 (2001). ISSN: 0163-1829

    Article  ADS  Google Scholar 

  98. V. Dmitriev, S. Rochal, Y. Gufan, P. Toledano, Definition of a transcendental order parameter for reconstructive phase transitions. Phys. Rev. Lett. 60, 1958–1961 (1988). ISSN: 1079-7114

    Article  ADS  Google Scholar 

  99. S. Shenoy, T. Lookman, A. Saxena, in Magnetism and Structure in Functional Materials, ed. by A. Planes, L. Mañosa, A. Saxena (Springer, Berlin, 2005). doi:10.1007/3-540-31631-2

  100. O.U. Salman, L. Truskinovsky, Minimal Integer Automaton behind Crystal Plasticity. Phys. Rev. Lett. 106, 175503 (2011)

    Article  ADS  Google Scholar 

  101. O.U. Salman, L. Truskinovsky, On the critical nature of plastic flow: One and two dimensional models. Int. J. Eng. Sci. 59, 219–254 (2012). ISSN: 00207225

    Article  Google Scholar 

  102. D. Rodney, A. Tanguy, D. Vandembrouc, Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011). ISSN: 0965-0393

    Article  ADS  Google Scholar 

  103. M. Braun, Compatibility conditions for discrete elastic structures. Rendiconti del Seminario Matematico 58, 37–48. ISSN: 0373-1243

    Google Scholar 

  104. X. Balandraud, G. Zanzotto, Stressed microstructures in thermally induced M9R-M18R martensites. J. Mech. Phys. Solids 55, 194–224 (2007). ISSN: 00225096

    Google Scholar 

  105. T. Kakeshita, T. Fukuda, A. Saxena, A. Planes (eds.), Disorder and Strain-Induced Complexity in Functional Materials (Springer, Berlin, 2012). doi:10.1007/978-3-642-20943-7. ISBN: 978-3-642- 20943-7

  106. S. Kartha, T. Castán, J. Krumhansl, J. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 67, 3630–3633 (1991). ISSN: 1079-7114

    Article  ADS  Google Scholar 

  107. S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52, 803–822 (1995)

    Article  ADS  Google Scholar 

  108. D. Wang, Y. Wang, Z. Zhang, X. Ren, Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys. Rev. Lett. 105, 205702 (2010). ISSN: 1079-7114

    Article  ADS  Google Scholar 

  109. D. Sherrington, A simple spin glass perspective on martensitic shape-memory alloys. J. Phys. Condens. Matter 20, 304213 (2008)

    Article  Google Scholar 

  110. R. Gröger, T. Lookman, A. Saxena, Defect-induced incompatibility of elastic strains: dislocations within the Landau theory of martensitic phase transformations. Phys. Rev. B 78, 184101 (2008)

    Article  ADS  Google Scholar 

  111. R. Gröger, T. Lookman, A. Saxena, Incompatibility of strains and its application to mesoscopic studies of plasticity. Phys. Rev. B 82, 144104 (2010). ISSN: 1098-0121

    Google Scholar 

  112. F.J. Pérez-Reche, E. Vives, L. Mañosa, A. Planes, Athermal character of structural phase transitions. Phys. Rev. Lett. 87, 195701 (2001). ISSN: 0031- 9007

    Article  ADS  Google Scholar 

  113. D. Wang et al., Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Materialia 66, 349–359 (2014). ISSN: 13596454

    Google Scholar 

  114. E. Bonnot et al., Hysteresis in a system driven by either generalized force or displacement variables: Martensitic phase transition in single-crystalline Cu-Zn-Al. Phys. Rev. B 76, 064105 (2007). ISSN: 10980121

    Google Scholar 

  115. X. Illa, M.-L. Rosinberg, E. Vives, Influence of the driving mechanism on the response of systems with athermal dynamics: The example of the random-field Ising model. Phys. Rev. B 74, 224403 (2006). ISSN: 1098-0121

    Google Scholar 

  116. X. Illa, M.-L. Rosinberg, P. Shukla, E. Vives, Magnetization-driven random-field Ising model at T \(=\) 0. Phys. Rev. B 74, 224404 (2006). ISSN: 1098-0121

    Google Scholar 

  117. F. J. Pérez-Reche, M.L. Rosinberg, G. Tarjus, Numerical approach to metastable states in the zero-temperature random-field Ising model. Phys. Rev. B 77, 064422 (2008). ISSN: 10980121

    Google Scholar 

  118. M.L. Rosinberg, G. Tarjus, F.J. Pérez-Reche, The \(T = 0\) random-field Ising model on a Bethe lattice with large coordination number: hysteresisand metastable states. J. Stat. Mech.: Theor. Exp. 2009, P03003 (2009)

    Google Scholar 

  119. S. Nandi, G. Biroli, G.Tarjus, Spinodals with Disorder: from Avalanches in Random Magnets to Glassy Dynamics. Phys. Rev. Lett. 116, 145701 (2016)

    Google Scholar 

  120. E. Vives, D. Soto-Parra, L. Mañosa, R. Romero, A. Planes, Drivinginduced crossover in the avalanche criticality of martensitic transitions. Phys. Rev. B 80, 180101 (2009). ISSN: 1098-0121

    Article  ADS  Google Scholar 

  121. E. Vives, D. Soto-Parra, L. Mañosa, R. Romero, A. Planes, Imaging the dynamics of martensitic transitions using acoustic emission. Phys. Rev. B 84, 060101 (2011). ISSN: 1098-0121

    Google Scholar 

  122. K. G. Wilson, The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983). ISSN: 00346861

    Google Scholar 

  123. M. Müller, M. Wyart, Marginal Stability in Structural, Spin, and Electron Glasses. Ann. Rev. Condens. Matter Phys. 6, 177–200 (2015)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Lev Truskinovsky and Giovanni Zanzotto for an enlightening collaboration on the topics covered in this chapter. The author is also grateful for insightful discussions and/or collaboration with a number of researchers including Eduard Vives, Antoni Planes, Lluís Mañosa, Jordi Ortín, Carles Triguero, Eckhard Salje, Sergei Taraskin, Stefano Zapperi, Turab Lookman and Avadh Saxena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Perez-Reche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perez-Reche, F.J. (2017). Modelling Avalanches in Martensites. In: Salje, E., Saxena, A., Planes, A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-45612-6_6

Download citation

Publish with us

Policies and ethics