Skip to main content

On the Mathematical Structure of Physical Quantities

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

The choice of the mathematical structure of physical quantities, which is natural for the description of finite physical reality and related problems, is discussed from the historical and the epistemological points of view. We show that for the establishment of physical quantities is fully sufficient the system of rational numbers which are equivalent to the finite ordered sets of integers, while the currently used system of real numbers is quite redundant for such a purpose. These facts may have far reaching consequences not only for pure epistemology but for the interpretation of many fundamental physical phenomena as well. Finally, the relation between the chosen structure of physical quantities and the so-called Principle of conformity of physics and mathematics is shortly discussed.

The infinity is a square without corners (Chinese proverb).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palacios J (1964) Dimensional analysis. Macmillan & Co., Ltd., London

    Google Scholar 

  2. Cariñena JF, Santander M (1988) Dimensional analysis. In: Hawkes PW (ed) Advances of electronics and electron physics. Academic Press Inc., Boston

    Google Scholar 

  3. Savage CW, Ehrlich P (eds) (1992) Philosophical and foundational issues in measurement theory. LEA-Publishers, New Jersey

    Google Scholar 

  4. Mareš JJ (2011) Hotness manifold, phenomenological temperature and other related concepts of thermal physics. In: Šesták J et al (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, p 327

    Google Scholar 

  5. Mareš JJ (2015) Do we know what the temperature is? J Therm Anal Calorim 120:223–230

    Article  Google Scholar 

  6. Cantor M (1907) Vorlesungen über Geschichte der Mathematik. B.G. Teubner, Leipzig

    Google Scholar 

  7. von Fritz K (1945) The discovery of incommensurability by Hippasus of Metapontum. Ann d Math 46:242–264

    Article  Google Scholar 

  8. Euclid of Alexandria: Elements. There are a number of critical editions in various languages; authors used Základy (Elementa), Czech transl. by Servít F (1907) J.Č.M., Praha

    Google Scholar 

  9. Tropfke J (1930) Geschichte der Elementar-Mathematik. W. de Gruyter & Co., Berlin

    Google Scholar 

  10. Legendre AM (1823) Éléments de géométrie avec des notes, 2nd edn. F. Didot, Paris

    Google Scholar 

  11. Bolzano B (1850) Paradoxien des Unedlichen. Orig. ed.: F. Přihonsky, Budissin, Reprint: (2006) Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  12. Dedekind R (1887) Was sind und was sollen die Zahlen? Stetigkeit und Irrationale Zahlen. Vieweg & Sohn, Braunschweig

    Google Scholar 

  13. Perron O (1921) Irrationalzahlen. Walter de Gruyter & Co., Berlin

    Google Scholar 

  14. du Bois-Reymond P (1882) Die Allgemeine Functionentheorie. H. Laupps, Tübingen

    Google Scholar 

  15. Cantor G (1932) Grundlagen einer allgemeinen Mannigfaltigkeitslehre; Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. In: Zermelo E (ed) G. Cantor—gesammelte Abhandlungen mathematischen und philosophischen Inhalts. B.G. Teubner, Leipzig, pp 165–208

    Google Scholar 

  16. Fraenkel A (1923) Einleitung in die Mengenlehre. Springer, Berlin

    Book  Google Scholar 

  17. Hilbert D (1926) Über das Unendliche. Math Annalen 95:161–190

    Article  Google Scholar 

  18. Gauss CF (1860) Letter from 12 July 1831. Briefwechsel Gauß-Schumacher II, Altona, p 269

    Google Scholar 

  19. Kronecker L (1887) Ueber die Zahlbegriff. J Reine Angew Math 101:337–355

    Google Scholar 

  20. Kronecker L (1901) Vorlesungen über Mathematik. B. G. Teubner, Leipzig

    Google Scholar 

  21. Campbell NR (1920) Physics—the elements. Cambridge University Press, Cambridge; Reprint (1957) Foundations of science, New York, Dover

    Google Scholar 

  22. Bridgman PW (1927) The logic of modern physics. MacMillan, New York

    Google Scholar 

  23. Stevens SS (1946) On the theory of scales of measurement. Science 103:677–680

    Article  Google Scholar 

  24. Hilbert D (1899) Grundlagen der Geometrie. In: Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, B.G. Teubner, Leipzig; English translation (1959) The foundations of geometry. The Open Court Publishing Co., La Salle, Ill

    Google Scholar 

  25. Hölder O (1901) Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Classe, Bd. 53:1–64

    Google Scholar 

  26. Lodge A (1888) The multiplication and division of concrete quantities. Nature 38:281–283

    Google Scholar 

  27. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  28. Einstein A (1923) The meaning of relativity. Princeton University Press, Princeton

    Google Scholar 

  29. Frank P (1932) Das Kausalgesetz und seine Grenzen. Springer, Wien

    Book  Google Scholar 

  30. Kyburg Jr HE (1993) Measuring errors of measurement. In: Ref [3]

    Google Scholar 

  31. Sheynin OB (1979) C. F. Gauss and the theory of errors. Arch Hist Exact Sci 20:21–72

    Article  Google Scholar 

  32. Czuber E (1932) Wahrscheinlichkeitsrechnung und ihre Anwendung auf Fehlerausgleichung. B.G. Teubner, Leipzig

    Google Scholar 

  33. Rényi A (1962) Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie. VEB Deutscher Verlag der Wissenschaften, Berlin. Czech transl. (1972) Teorie pravděpodobnosti. Academia, Praha

    Google Scholar 

  34. Lévy-Leblond J-M, Balibar F (1990) Quantics—rudiments of quantum physics. North-Holland, Amsterdam

    Google Scholar 

  35. von Helmholtz H (1887) Zählen und Messen, erkenntnisstheoretisch betrachtet. In: Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctotorjubiläum gewidmet, Fues’ Verlag, Leipzig, pp 17–52

    Google Scholar 

  36. Russell B (1903) Principles of mathematics. Norton, New York

    Google Scholar 

  37. Krantz D, Luce RD, Suppes P, Tversky A (1971) Foundations of measurement: additive and polynomial representations. Academic Press, New York

    Google Scholar 

  38. Quine WVO (1951) Two dogmas of empiricism. Philos Rev 60:20–43

    Article  Google Scholar 

  39. Hardy GH, Wright EM (2011) An introduction to the theory of numbers, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  40. Leman A (1952) Vom periodischen Dezimalbruch zur Zahlentheorie. B. G. Teubner, Leipzig

    Google Scholar 

  41. Niven I (1961) Numbers: rational and irrational. The Mathematical association of America, Washington

    Google Scholar 

  42. Khinchin, AY (1949) Tsepnye droby. GITL, Leningrad; English transl (1964) Continued fractions. University Press, Chicago

    Google Scholar 

  43. Perron O (1913) Die Lehre von den Kettenbrüchen. B. G. Teubner, Leipzig

    Google Scholar 

  44. Olds CD (1963) Continued fractions. Random House Inc., New York

    Google Scholar 

  45. Sushkevich AK (1956) Teoriya chisel—elementarnyi kurs. Izdatel’stvo Kh. Uni., Khar’kiv

    Google Scholar 

  46. Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z Phys 33:879–893

    Article  CAS  Google Scholar 

  47. Bischoff E (1903) Die Kabbalah, Einführung in die Jüdische Mystik. Grieben’s Verlag, Leipzig

    Google Scholar 

  48. Mueckenheim W (2008) The infinite in sciences and arts. In: Proceedings of the 2nd international symposium of mathematics and its connections to the arts and sciences. University of Southern Denmark, Odense, pp 265–272, arXiv:0709.4102 [math.GM]

  49. Rodych V (2011) Wittgenstein’s philosophy of mathematics. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, http://plato.stanford.edu/archives/sum2011/entries/wittgenstein-mathematics/

  50. Hartman RS (1942) Prime number and cosmical number. Philos Sci 9:190–196

    Article  Google Scholar 

  51. Feynman R, Leighton RB, Sands M (1964) The Feynman’s lectures on physics, vol I. Addison-Wesley, New York

    Google Scholar 

  52. Fredkin E (1992) Finite Nature. In: Proceedings of the XXVIIth Rencontre de Moriond, Les Arcs, Savoie, France

    Google Scholar 

  53. Good IJ (1988) Physical numerology. Technical Report No. 88–26, Dep. of Statistics, Virginia Tech., Blacksburg, VA24 601

    Google Scholar 

  54. McGoveran DO, Noyes HP (1989) Physical numerology? SLAC-PUB-4929, pp 1–17

    Google Scholar 

  55. Fürth R (1929) Über einen Zusammenhang zwischen quantenmechanischer Unschärfe und Struktur der Elementarteilchen und hierauf begründete Berechnung der Massen von Proton und Elektron. Z Phys 57:429–446

    Article  Google Scholar 

  56. Kritov A (2013) A new large number numerical coincidences. Prog Phys 10:25–28

    Google Scholar 

  57. Eddington A (1939) The philosophy of physical science. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří J. Mareš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mareš, J.J., Hubík, P., Špička, V. (2017). On the Mathematical Structure of Physical Quantities. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_24

Download citation

Publish with us

Policies and ethics