Skip to main content

Distributed NMPC

  • Chapter
  • First Online:
Nonlinear Model Predictive Control

Part of the book series: Communications and Control Engineering ((CCE))

  • 7172 Accesses

Abstract

For large-scale systems such as street traffic, cyber- physical production systems or energy grids on an operational level, the MPC approach introduced in Chap. 3 is typically inapplicable in real time. Moreover, communication restrictions or privacy considerations may render the centralized solution of the optimal control problem in each step of the NMPC scheme impossible. To cope with these issues, the optimal control problem is split into subproblems, which are simpler to solve but may be linked by dynamics, cost functions or constraints. As the examples indicate, each subproblem may be seen as an independent unit. If these units are not coordinated, i.e., if there exists no data exchange and if inputs from connected units are considered as disturbances, the problem is referred to as decentralized. Including communication, the problem is called distributed and can again be split into subclasses of cooperative and noncooperative control. Within this chapter, we impose the assumption of flawless communication to analyze both stability and performance of the overall system for the distributed case. Additionally, we briefly sketch how to analyze the robustness of the distributed setting. Last, we discuss basic coordination methods on the tactical control layer to solve the distributed problem and relate these methods to our stability results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn, Athena Scientific, Belmont (2003)

    Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternation direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Camponogara, E., Jia, D., Krogh, B., Talukdar, S.: Distributed model predictive control. IEEE Control Syst. Mag. 22, 44–52 (2002)

    Article  Google Scholar 

  5. Camponogara, E., de Lima, M.: Distributed optimization for MPC of linear networks with uncertain dynamics. IEEE Trans. Autom. Control 57(3), 2613–2618 (2012)

    Article  MathSciNet  Google Scholar 

  6. Camponogara, E., Scherer, H.: Distributed optimization for model predictive control of linear dynamic networks with control-input and output constraints. Autom. Sci. Eng. 8(1), 233–242 (2011)

    Google Scholar 

  7. Chang, T.H., Nedic, A., Scaglione, A.: Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans. Autom. Control 59(6), 1524–1538 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cui, H., Jacobsen, E.: Performance limitations in decentralized control. J. Process Control 7(12), 485–494 (2002)

    Article  Google Scholar 

  9. Dold, J., Stursberg, O.: Distributed predictive control of communicating and platooning vehicles. In: Proceedings of the 48th IEEE Conference on Decision and Control held jointly with the 28th Chinese Control Conference CDC/CCC2009, pp. 561–566 (2009)

    Google Scholar 

  10. Dold, J., Stursberg, O.: Distributed Predictive Control of Communicating and Platooning Vehicles. In: Proceedings of the 48th IEEE Conference on Decision and Control held jointly with the 28th Chinese Control Conference CDC/CCC 2009, pp. 561–566 (2009)

    Google Scholar 

  11. Dunbar, W.: Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Trans. Autom. Control 52(7), 1249–1263 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dunbar, W., Desa, S.: Assessment and future directions of nonlinear model predictive control, chap. Distributed MPC for Dynamic Supply Chain Management, pp. 607–615. Springer, Berlin (2007)

    Google Scholar 

  13. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  14. Farina, M., Betti, G., Scattolini, R.: Distributed predictive control of continuous-time systems. Syst. Control Lett. 74, 32–40 (2014)

    Google Scholar 

  15. Findeisen, R., Allgöwer, F.: Computational Delay in Nonlinear Model Predictive Control. In: Proceedings of the International Symposium on Advanced Control of Chemical Processes (2004)

    Google Scholar 

  16. Giselsson, P., Rantzer, A.: Distributed Model Predictive Control with Suboptimality and Stability Guarantees. In: Proceedings of the 49th IEEE Conference on Decision and Control CDC2010, pp. 7272–7277 (2010)

    Google Scholar 

  17. Grüne, L., Worthmann, K.: A distributed NMPC scheme without stabilizing terminal constraints. In: Johansson, R., Rantzer, A. (eds.) Distributed Decision Making and Control, pp. 261–287. Springer, New york (2012)

    Chapter  Google Scholar 

  18. Kerrigan, E.C.: Robust constraint satisfaction: Invariant sets and predictive control. PhD Thesis, University of Cambridge (2000)

    Google Scholar 

  19. Kouzoupis, D., Quirynen, R., Houska, B., Diehl, M.: A block based ALADIN scheme for highly parallelizable direct optimal control. In: Proceedings of the 2016 American Control Conference, Boston, USA, pp. 1124–1129 (2016)

    Google Scholar 

  20. Motee, N., Sayyar-Rodsari, B.: Optimal partitioning in distributed model predictive control. In: Proceedings of the 2003 American Control Conference, vol. 6, pp. 5300–5305. IEEE (2003)

    Google Scholar 

  21. Müller, M.A., Reble, M., Allgöwer, F.: Cooperative control of dynamically decoupled systems via distributed model predictive control. Int. J. Robust Nonlinear Control 22(12), 1376–1397 (2012)

    Google Scholar 

  22. O’Donoghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE Trans. Control Syst. Technol. 21(6), 2432–2442 (2013)

    Article  Google Scholar 

  23. Pannek, J.: Parallelizing a state exchange strategy for noncooperative distributed NMPC. Syst. Control Lett. 62(1), 29–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rantzer, A.: Dynamic dual decomposition for distributed control. Proc. Am. Control Conf. 2009, 884–888 (2009)

    Google Scholar 

  25. Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  26. Rawlings, J., Stewart, B.: Coordinating multiple optimization-based controllers: New opportunities and challenges. J. Process Control 18(9), 839–845 (2008)

    Article  Google Scholar 

  27. Richards, A., How, J.: A Decentralized Algorithm for Robust Constrained Model Predictive Control. In: Proceedings of the American Control Conference, pp. 4261–4266 (2004)

    Google Scholar 

  28. Richards, A., How, J.: Robust distributed model predictive control. Int. J. Control 80(9), 1517–1531 (2007)

    Google Scholar 

  29. Savorgnan, C., Romani, C., Kozma, A., Diehl, M.: Multiple shooting for distributed systems with applications in hydro electricity production. J. Process Control 21(5), 738–745 (2011)

    Google Scholar 

  30. Scattolini, R.: Architectures for distributed and hierarchical model predictive control a review. J. Process Control 19(5), 723–731 (2009)

    Article  Google Scholar 

  31. Singh, V., Atrey, P., Kankanhalli, M.: Coopetitive multi-camera surveillance using model predictive control. Mach. Vis. Appl. 19(5), 375–393 (2008)

    Article  Google Scholar 

  32. Stewart, B., Venkat, A., Rawlings, J., Wright, S., Pannocchia, G.: Cooperative distributed model predictive control. Syst. Control Lett. 59(8), 460–469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Venkat, A.: Distributed model predictive control: Theory and applications. PhD Thesis in Chemical Engineering, University of Wisconsin-Madison (2006)

    Google Scholar 

  34. Venkat, A., Hiskens, I., Rawlings, J., Wright, S.: Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Control Syst. Technol. 16(6), 1192–1206 (2008)

    Article  Google Scholar 

  35. Venkat, A., Rawlings, J., Wright, S.: Stability and Optimality of Distributed Model Predictive Control. In: 44th IEEE Conference on Decision and Control and European Control Conference CDC-ECC ’05, pp. 6680–6685 (2005)

    Google Scholar 

  36. Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and robustness. Automatica 45(1), 86–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grüne .

Problems

Problems

  1. 1.

    Reconsider Example 9.11 with dynamics

    $$\begin{aligned} x(n + 1) = \begin{pmatrix} x^1(n + 1) \\ x^2(n + 1) \end{pmatrix} = \begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} x^1(n) \\ x^2(n) \end{pmatrix} + \begin{pmatrix} u^1(n) \\ u^2(n) \end{pmatrix} =: f(x(n), u(n)). \end{aligned}$$

    constraints \(|x^1 - x^2| \ge \delta > 0\) and costs

    $$\begin{aligned} J_N(x_0, u(\cdot )) =&\sum _{k= 0}^{N- 1} \left( \sum _{{p}= 1}^{P} \Vert x^{p}_{u^p}(k, x^p_0, i^{p}) - x_{*}^{p}\Vert ^2 + \Vert u^{p}(k) \Vert ^2 \right) \\&\qquad + \sum _{{p}= 1}^{P} \Vert x^{p}_{u^p}(N, x^p_0, i^{p}) - x_{*}^{p}\Vert ^2 \end{aligned}$$

    with \(x_0^1 \not = x_0^2\) and \(x_{*}^1 = x_{*}^2\). Show that Assumption 9.32 holds and explain why Theorem 9.33 still fails to apply.

  2. 2.

    Consider the inverted pendulum from Example 2.10 with dynamics

    $$\begin{aligned} \dot{x}_1(t)&= x_2(t) \\ \dot{x}_2(t)&= u(t) \\ \dot{x}_3(t)&= x_4(t) \\ \dot{x}_4(t)&= -\frac{g}{l}\sin (x_3(t)) - u(t) \cos (x_3(t)) - \frac{k_L}{l} x_4(t) | x_4(t) | - k_R \text {sgn}(x_4(t)) \end{aligned}$$

    Extending the single pendulum to a \({p}\) pendulum (for each pendulum the tip is attached to the end of the previous pendulum) and separating cart and each pendulum into subsystems, show that the Algorithm of Richards and How can only be applied for one order of subsystems.

  3. 3.

    Consider two cars modeled as points in the plane with dynamics

    $$\begin{aligned} x^p(n+1) = x^p(n) + u^{p}(n) \end{aligned}$$

    where \(x^p(n) \in \mathbb {R}^2\) and \(u^{p}(n) \in [-\delta , \delta ] \subset \mathbb {R}^2\). Assume that the constraints are given by \(\Vert x^1(n) - x^2(n) \Vert _2 \ge 1\) and the cost function is defined via

    $$\begin{aligned} J^{p}_N(x^p, u^{p}) = \sum _{k= 0}^{N- 1} \Vert x^{p}_{u^p}(k; x^p_0) - x_{*}^{p}\Vert ^2 \end{aligned}$$

    \(\Vert x_{*}^1 - x_{*}^2 \Vert _2 \ge 1\). Given \(\delta = 1\), what is the minimal horizon \(N\) such that for each \({p}\) we observe a decrease in \(J^{p}_N\) for all feasible initial values? Does the minimal horizon change for smaller \(\delta \)?

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grüne, L., Pannek, J. (2017). Distributed NMPC. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-46024-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46024-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46023-9

  • Online ISBN: 978-3-319-46024-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics