Skip to main content

Diatom Adhesives: Molecular and Mechanical Properties

  • Chapter
  • First Online:
Biological Adhesives

Abstract

Diatoms are an incredibly diverse group of microalgae that are primarily characterized by their highly ornamented siliceous cell wall. Diatoms have long been a source of interest in the field of bioadhesion due to their ability to adhere and glide upon surfaces, as well as construct extracellular adhesive structures that can enable temporary or permanent adhesion to a surface. This chapter introduces the various adhesion and motility strategies employed by a number of benthic diatom species, describing the mechanisms that facilitate these processes. We review the chemical, molecular, and physical characterization of extracellular polymeric substances resident on the cell surface, as well as those secreted specifically for adhesion and motility from various structures in the cell wall. We highlight the significant work undertaken using atomic force microscopy to understand the nanomechanical properties of these adhesives, allowing sub-molecular structures to be identified that have allowed new insights into their role in enhancing diatom adhesion to surfaces even in high-energy aquatic environments. Finally we look at how new technological advances, such as the recent sequencing of several diatom genomes, together with an integrative research approach, will facilitate the further identification and characterization of diatom adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberte RS, Snyder S, Zahuranec BJ, Whetsone M (1992) Biofouling research needs for the United States Navy: program history and goals. Biofouling 6:91–95

    Article  Google Scholar 

  • Anderson C, Atlar M, Callow M, Candries M, Townsin RL (2003) The development of foul-release coatings for seagoing vessels. J Mar Des Oper 84:11–23

    Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Schnitzler Parker M, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bellinger BJ, Abdullahi AS, Gretz MR, Underwood GJC (2005) Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquat Microb Ecol 38:169–180

    Article  Google Scholar 

  • Bemis JE, Akhremitchev BB, Walker GC (1999) Single polymer chain elongation by atomic force microscopy. Langmuir 15:2799–2805

    Article  CAS  Google Scholar 

  • Berglin M, Delage L, Potin P, Vilter H, Elwig H (2004) Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5:2376–2383

    Article  CAS  PubMed  Google Scholar 

  • Bhosle NB, Sawant SS, Garg A, Wagh A (1995) Isolation and partial chemical analysis of exopolysaccharides from the marine fouling diatom Navicula subinflata. Bot Mar 38:103–110

    Article  CAS  Google Scholar 

  • Binning G, Quate CF, Gerber CH (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Bohlander GS (1991) Biofilm effects on drag: measurements on ships. In: Long DM, Bufton R, Yakimiuk P, Williams K (eds) Polymers in a marine environment. Institute of Marine Engineering, London, pp 135–138

    Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  CAS  PubMed  Google Scholar 

  • Callow ME (1986) Fouling algae from “in-service” ships. Bot Mar 29:351–357

    Article  Google Scholar 

  • Callow ME (1996) Ship-fouling: the problem and method of control. Biodeter Abst 10:411–421

    Google Scholar 

  • Chiovitti A, Bacic A, Burke J, Wetherbee R (2003a) Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros australis (Bacillariophyceae). Eur J Phycol 38:351–360

    Article  CAS  Google Scholar 

  • Chiovitti A, Higgins MJ, Harper RE, Wetherbee R, Bacic A (2003b) The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). J Phycol 39:543–554

    Article  CAS  Google Scholar 

  • Chiovitti A, Molino P, Crawford SA, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminarin and not extracellular polysaccharides. Eur J Phycol 39:117–128

    Article  CAS  Google Scholar 

  • Chiovitti A, Heraud P, Dugdale TM, Hodson OM, Curtain RCA, Dagastine RR, Wood BR, Wetherbee R (2008) Divalent cations stabilize the aggregation of sulfated glycoproteins in the adhesive nanofibers of the biofouling diatom Toxarium undulatum. Soft Matter 4:811–820

    Article  CAS  Google Scholar 

  • Clarkson N, Evans LV (1995a) Further studies investigating a potential non-leaching biocide using the marine biofouling diatom Amphora coffeaeformis. Biofouling 9:17–30

    Article  CAS  Google Scholar 

  • Clarkson N, Evans LV (1995b) Raft trial experiments to investigate the antifouling potential of silicone elastomer polymers with added biocide. Biofouling 9:129–143

    Article  CAS  Google Scholar 

  • Cohn SA, Weitzell RE (1996) Ecological considerations of diatom motility. I. Characterization of adhesion and motility in four diatom species. J Phycol 32:928–939

    Article  Google Scholar 

  • Cohn SA, Farrell JF, Munro JD, Ragland RL, Weitzell RE, Wibisono BL (2003) The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res 18:225–243

    Article  Google Scholar 

  • Colin C, Leblanc C, Gurvan M, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10:156–166

    Article  CAS  PubMed  Google Scholar 

  • Cooksey KE (1981) Requirement for calcium in adhesion of a fouling diatom to glass. Appl Environ Microbiol 41:1378–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey B, Cooksey KE (1980) Calcium is necessary for motility in the diatom Amphora coffeaeformis. Plant Physiol 65:129–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey B, Cooksey KE (1988) Chemical signal-response in diatoms of the genus Amphora. J Cell Sci 91:523–529

    CAS  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1992) The design of antifouling surfaces: background and some approaches. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms – science and technology. Kluwer Academic, Dordrecht, pp 529–549

    Chapter  Google Scholar 

  • Crawford SA, Higgins MJ, Mulvaney P, Wetherbee R (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554

    Article  Google Scholar 

  • Daniel GF, Chamberlain AHL, Jones EBG (1980) Ultrastructural observations on the marine fouling diatom Amphora. Helgoländer Meeresunters 34:123–149

    Article  CAS  Google Scholar 

  • Daniel GF, Chamberlain AHL, Jones EBG (1987) Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. Br Phycol J 22:101–118

    Article  Google Scholar 

  • de Brouwer JF, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472

    Article  Google Scholar 

  • Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nano-fibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89(6):4252–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar LA (1983) Mucilage secretions of moving diatoms. Protoplasma 118:44–48

    Article  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1982) Ultrastructural localization of polysaccharides in the motile diatom Navicula cuspidata. Protoplasma 113:10–22

    Article  CAS  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1983) The mechanism of diatom locomotion. I. An ultrastructural study of the motility apparatus. Proc R Soc Lond B 281:331–343

    Article  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1984) Diatom locomotion. Prog Phycol Res 3:47–88

    Google Scholar 

  • Edgar LA, Zavortink M (1983) The mechanism of diatom locomotion. II. Identification of actin. Proc R Soc Lond B 218:345–348

    Article  CAS  Google Scholar 

  • Fisher TE, Marszalek PE, Fernandez JM (2000) Stretching single molecules into novel conformations using the atomic force microscope. Nat Struct Biol 7:719–723

    Article  CAS  PubMed  Google Scholar 

  • Gebeshuber IC, Thompson JB, Del Amo Y, Stachelberger H, Kindt JH (2002) In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mater Sci Technol 18:763–766

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelberger H, Brzezinski MA, Stucky GD, Morse DE, Hansma PK (2003) Atomic force microscopy study of living diatoms in ambient conditions. J Microsc 212:292–299

    Article  CAS  PubMed  Google Scholar 

  • Geesey GG, Wigglesworth-Cooksey B, Cooksey KE (2000) Influence of calcium and other cations on surface adhesion of bacteria and diatoms. Biofouling 15:195–205

    Article  CAS  PubMed  Google Scholar 

  • Gibson RA (1979) Observations of stalk production by Pseudohimantidium pacificum Hust. & Krasske (Bacillariophyceae: Protoraphidaceae). Nova Hedwigia 31:899–915

    Google Scholar 

  • Gordon R (1987) A retaliatory role for algal projectiles, with implications for the mechanochemistry of diatom gliding motility. J Theor Biol 126:419–436

    Article  Google Scholar 

  • Gutierrez-medina B, Guerra AJ, Maldonado AIP, Rubio YC, Meza JVG (2014) Circular random motion in diatom gliding under isotropic conditions. Phys Biol 11:066006

    Article  PubMed  Google Scholar 

  • Häder D-P, Hoiczyk E (1992) Gliding motility. In: Melkonian M (ed) Algal cell motility. Chapman and Hall, New York, pp 1–38

    Chapter  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2000) The topography of soft, adhesive diatom ‘trails’ as observed by atomic force microscopy. Biofouling 16:133–139

    Article  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 153:25–38

    Article  PubMed  Google Scholar 

  • Higgins MJ, Molino P, Mulvaney P, Wetherbee R (2003a) The structure and nanomechanical properties of the adhesive mucilage that mediates diatom substratum adhesion and motility. J Phycol 39:1181–1193

    Article  CAS  Google Scholar 

  • Higgins MJ, Sader JE, Mulvaney P, Wetherbee R (2003b) Probing the surface of living diatoms with atomic force microscopy: the nanostructure and nanomechanical properties of the mucilage layer. J Phycol 39:722–734

    Article  Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roener SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566

    Article  CAS  Google Scholar 

  • Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME (2004) Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling 20:323–329

    Article  CAS  PubMed  Google Scholar 

  • Hugel T, Seitz M (2001) The study of molecular interactions by AFM force spectroscopy. Macromol Rapid Commun 22:989–1016

    Article  CAS  Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Article  PubMed  Google Scholar 

  • Johnson LM, Hoagland KD, Gretz MR (1995) Effects of bromine and iodine on stalk secretion in the biofouling diatom Achnanthes longipes (Bacillariophyceae). J Phycol 31:401–412

    Article  CAS  Google Scholar 

  • Kellermeyer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116

    Article  Google Scholar 

  • Khandeparker RD, Bhosle NB (2001) Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm.S. Biofouling 17:117–127

    Article  CAS  Google Scholar 

  • Kooistra WHCF, de Stafano M, Mann DG, Salma N, Medlin LK (2003) Phylogenetic position of Toxarium, a pennate-like lineage within centric diatoms (Bacillariophyceae). J Phycol 39:185–197

    Article  CAS  Google Scholar 

  • Lewis R, Johnson LM, Hoagland KD (2002) Effects of cell density, temperature, and light intensity on growth and stalk production in the biofouling diatom Achnanthes longipes (Bacillariophyceae). J Phycol 38:1125–1131

    Article  Google Scholar 

  • Lind JL, Heimann K, Miller EA, van Vliet C, Hoogenraad NJ, Wetherbee R (1997) Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta 203:213–221

    Article  CAS  PubMed  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Marx K (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Wetherbee R, Bacic A (1999) Subcellular location and composition of the wall and secreted extracellular sulphated polysaccharides/proteoglycans of the diatom Stauroneis amphioxys Gregory. Protoplasma 206:188–200

    Article  CAS  Google Scholar 

  • Molino PJ, Wetherbee W (2008) The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24(5):365–379

    Article  CAS  PubMed  Google Scholar 

  • Molino PJ, Hodson OM, Quinn JF, Wetherbee R (2006) Utilizing QCM-D to characterize the adhesive mucilage secreted by two marine diatom species in-situ and in real-time. Biomacromolecules 7:3276–3282

    Article  CAS  PubMed  Google Scholar 

  • Molino PJ, Campbell E, Wetherbee R (2008a) Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia. Biofouling 25(8):685–694

    Article  Google Scholar 

  • Molino PJ, Hodson OM, Quinn JF, Wetherbee R (2008b) The quartz crystal microbalance: a new tool for the investigation of the bioadhesion of diatoms to surface of differing surface energies. Langmuir 24(13):6730–6737

    Article  CAS  PubMed  Google Scholar 

  • Montsant A, Jabbari K, MaheswariU BC (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Moroz AL, Ehrman JM, Clair TA, Gordon RJ, Kaczmarska I (1999) The impact of ultraviolet-B radiation on the motility of the freshwater epipelic diatom Nitzschia lineariz. Global Change Biol 5:191–199

    Article  Google Scholar 

  • Omae I (2003) Organotin antifouling paints and their alternatives. Appl Organomet Chem 17:81–105

    Article  CAS  Google Scholar 

  • Oroudjev E, Soares J, Arcidiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA 99:6460–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 43:223–234

    Article  Google Scholar 

  • Pettitt ME, Henry SL, Callow ME, Callow JA, Clare AS (2004) Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20:299–311

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heaps JD, Schmid A-M, Edgar LA (1990) The cell biology of diatom valve formation. Prog Phycol Res 7:1–168

    CAS  Google Scholar 

  • Pickett-Heaps JD, Hill DRA, Blaze KL (1991) Active gliding in an araphid marine diatom, Ardissonea (formerly Synedra) crystallina. J Phycol 27:718–725

    Article  Google Scholar 

  • Poulsen NC, Spector I, Spurck TP, Schultz TF, Wetherbee R (1999) Diatom gliding is the result of an actin-myosin motility system. Cell Motil Cytoskeleton 44:23–33

    Article  CAS  PubMed  Google Scholar 

  • Poulson N, Kroger N, Harrington MJ, Brunner E, Paasch S, Buhmann MT (2014) Isolation and biochemical characterization of underwater adhesives from diatoms. Biofouling 30(4):513–523

    Article  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997a) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Rief M, Oesterhelt F, Heymann B, Gaub HE (1997b) Single molecule force spectroscopy on polysaccharides by AFM. Science 275:1295–1297

    Article  CAS  PubMed  Google Scholar 

  • Rosowski JR (1980) Valve and band morphology of some freshwater diatoms. II. Integration of valves and bands in Navicula confervacea vr. confervacea. J Phycol 16:88–101

    Article  Google Scholar 

  • Rosowski JR, Hoagland KD, Roemer SC (1983) Valve and band morphology of some freshwater diatoms. IV. Outer surface mucilage of Navicula confervacea var. confervacea. J Phycol 19:342–347

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, Cambridge, 747 pp

    Google Scholar 

  • Serôdio J, da Silva JM, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Smestad Paulsen B, Haug A, Larsen B (1978) Structural studies of a carbohydrate-containing polymer present in the mucilage tubes of the diatom Berkeleya rutilans. Carbohydr Res 66:103–111

    Article  Google Scholar 

  • Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  • Staats N, de Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169

    Article  Google Scholar 

  • Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by epipelic diatoms. In: Callow JM (ed) Advances in botanical research, vol 40. Elsevier Academic Press, Oxford, pp 183–240

    Chapter  Google Scholar 

  • Vilter H (1984) Peroxidases from Phaeophyceae – a vanadium (V)-dependent peroxidase from Ascophyllum nodosum. 5. Phytochemistry 23:1387–1390

    Article  CAS  Google Scholar 

  • Vreeland V, Waite JH, Epstein L (1998) Polyphenols and oxidases in substratum adhesion by marine algae and mussels. J Phycol 34:1–8

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Mollet J-C, Gretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae). II. 2,6-dichlorobenzonitrile inhibition of motility and stalk production in the marine diatom Achnanthes longipes. Plant Physiol 113:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen Y, Lavin C, Gretz MR (2000) Extracellular matrix assembly in diatoms (Bacillariophyceae). IV. Ultrastructure of Achnanthes longipes and Cymbella cistula as revealed by high-pressure freezing/freeze substitution and cryo-field emission scanning electron microscopy. J Phycol 36:367–378

    Article  Google Scholar 

  • Webster DR, Cooksey KE, Rubin RW (1985) An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom, Amphora coffeaeformis. Cell Motil Cytoskeleton 5:103–122

    Article  CAS  Google Scholar 

  • Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15

    Article  Google Scholar 

  • Wigglesworth-Cooksey B, Cooksey KE (1992) Can diatoms sense surfaces?: state of our knowledge. Biofouling 5:227–238

    Article  CAS  Google Scholar 

  • Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell–cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigglesworth-Cooksey B, van der Mei H, Busscher HJ, Cooksey KE (1999) The influence of surface chemistry on the control of cellular behaviour: studies with a marine diatom and a wettability gradient. Colloids Surf B Biointerfaces 15:71–79

    Article  CAS  Google Scholar 

  • Willis A, Chiovitti A, Dugdale TM, Wetherbee R (2013) Characterisation of the extracellular matrix of Phaeodactylum tricornutum (Bacillariophyceae): structure, composition, and adhesive characteristics. J Phycol 49:937–949

    CAS  PubMed  Google Scholar 

  • Willis A, Eason-Hubbard M, Hodson O, Maheswari U, Bowler C, Wetherbee R (2014) Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): genomic identification of amino-acid profiling and in vivo analysis. J Phycol 50:837–849

    Article  CAS  PubMed  Google Scholar 

  • Wustman BA, Gretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae). I. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms. Plant Physiol 113:1059–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wustman BA, Lind J, Wetherbee R, Gretz MR (1998) Extracellular matrix assembly in diatoms (Bacillariophyceae). III. Organization of fucoglucuronogalactans within the adhesive stalks of Achnanthes longipes. Plant Physiol 116:1431–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatanova J, Lindsay SM, Leuba SH (2000) Single molecule force spectroscopy in biology using atomic force microscopy. Prog Biophys Mol Biol 74:37–61

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Molino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Molino, P.J., Chiovitti, A., Higgins, M.J., Dugdale, T.M., Wetherbee, R. (2016). Diatom Adhesives: Molecular and Mechanical Properties. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_3

Download citation

Publish with us

Policies and ethics