Skip to main content

Analysis of Defect Developments in Composite Forming

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

Continuous fiber-reinforced composite materials are increasingly used because they meet high performance standards associated to light weight. Recent-generation aircrafts make extensive use of composite materials for their primary structure [1]. There is also a strong interest in the automotive industry to reduce the mass of the components and consequently the fuel consumption of vehicles [2, 3]. However, this composite material potential comes with prices to pay. In particular, the good mechanical properties of the composite request that the manufacturing process is of high quality or put in another way that the manufactured part is defect-free or at least that it contains as few defects as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Phil, C. Soutis (eds.), Polymer Composites in the Aerospace Industry (Elsevier, Amsterdam, 2014)

    Google Scholar 

  2. E.R. Fuchs, F.R. Field, R. Roth, R.E. Kirchain, Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Compos. Sci. Technol. 68(9), 1989–2002 (2008)

    Article  Google Scholar 

  3. K. Friedrich, A.A. Almajid, Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 20(2), 107–128 (2013)

    Article  Google Scholar 

  4. X.Q. Peng, J. Cao, A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos. A: Appl. Sci. Manuf. 36(6), 859–874 (2005)

    Article  Google Scholar 

  5. W.R. Yu, P. Harrison, A. Long, Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Compos. A: Appl. Sci. Manuf. 36(8), 1079–1093 (2005)

    Article  Google Scholar 

  6. R.H.W. Ten Thije, R. Akkerman, J. Huétink, Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput. Methods Appl. Mech. Eng. 196(33), 3141–3150 (2007)

    Article  Google Scholar 

  7. Y. Aimene, E. Vidal-Sallé, B. Hagège, F. Sidoroff, P. Boisse, A hyperelastic approach for composite reinforcement large deformation analysis. J. Compos. Mater. 44, 5–26 (2010)

    Article  Google Scholar 

  8. A. Charmetant, J.G. Orliac, E. Vidal-Sallé, P. Boisse, Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos. Sci. Technol. 72(12), 1352–1360 (2012)

    Article  Google Scholar 

  9. Q.T. Nguyen, E. Vidal-Sallé, P. Boisse, C.H. Park, A. Saouab, J. Bréard, G. Hivet, Mesoscopic scale analyses of textile composite reinforcement compaction. Compos. Part B 44(1), 231–241 (2013)

    Article  Google Scholar 

  10. K.A. Fetfatsidis, D. Jauffrès, J.A. Sherwood, J. Chen, Characterization of the tool/fabric and fabric/fabric friction for woven-fabric composites during the thermostamping process. Int. J. Mater. Form. 6(2), 209–221 (2013)

    Article  Google Scholar 

  11. S. Allaoui, G. Hivet, A. Wendling, P. Ouagne, D. Soulat, Influence of the dry woven fabrics meso-structure on fabric/fabric contact behaviour. J. Compos. Mater. 46(6), 627–639 (2012)

    Article  Google Scholar 

  12. B. Cornelissen, U. Sachs, B. Rietman, R. Akkerman, Dry friction characterisation of carbon fibre tow and satin weave fabric for composite applications. Compos. A: Appl. Sci. Manuf. 56, 127–135 (2014)

    Article  Google Scholar 

  13. H.J.L. Dirk, C. Ward, K.D. Potter, The engineering aspects of automated prepreg layup: History, present and future. Compos. Part B 43(3), 997–1009 (2012)

    Article  Google Scholar 

  14. D. Leutz, M. Vermilyea, S. Bel, R. Hinterhölzl, Forming simulation of thick AFP laminates and comparison with live CT imaging. Appl. Compos. Mater. 23(4), 583–600 (2016)

    Article  Google Scholar 

  15. P. Hallander, M. Akermo, C. Mattei, M. Petersson, T. Nyman, An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos. A: Appl. Sci. Manuf. 50, 54–64 (2013)

    Article  Google Scholar 

  16. P. Hallander, J. Sjölander, M. Åkermo, Forming induced wrinkling of composite laminates with mixed ply material properties; an experimental study. Compos. A: Appl. Sci. Manuf. 78, 234–245 (2015)

    Article  Google Scholar 

  17. J. Sjölander, P. Hallander, M. Åkermo, Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms. Compos. A: Appl. Sci. Manuf. 81, 41–51 (2016)

    Article  Google Scholar 

  18. J.S. Lightfoot, M.R. Wisnom, K. Potter, A new mechanism for the formation of ply wrinkles due to shear between plies. Compos. A: Appl. Sci. Manuf. 49, 139–147 (2013)

    Article  Google Scholar 

  19. S.P. Haanappel, R.H.W. Ten Thije, U. Sachs, B. Rietman, R. Akkerman, Formability analyses of uni-directional and textile reinforced thermoplastics. Compos. A: Appl. Sci. Manuf. 56, 80–92 (2014)

    Article  Google Scholar 

  20. T.G. Gutowski, G. Dillon, S. Chey, H. Li, Laminate wrinkling scaling laws for ideal composites. Compos. Manuf. 6(3), 123–134 (1995)

    Article  Google Scholar 

  21. R.K. Pandey, C.T. Sun, Mechanisms of wrinkle formation during the processing of composite laminates. Compos. Sci. Technol. 59(3), 405–417 (1999)

    Article  Google Scholar 

  22. K. Potter, B. Khan, M. Wisnom, T. Bell, J. Stevens, Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos. A: Appl. Sci. Manuf. 39(9), 1343–1354 (2008)

    Article  Google Scholar 

  23. T. Belytschko, An overview of semi-discretisation and time integration procedures, in Computation Methods for Transient Analysis, ed. by T. Belytschko, T.J.R. Hughes (Elsevier Science, Amsterdam, 1983), pp. 1–65

    Google Scholar 

  24. T.J.R. Hughes, T. Belytschko, A precise of developments in computational methods for transient analysis. J. Appl. Mech. 50, 1033–1041 (1983)

    Article  Google Scholar 

  25. M.A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures, vol 2 (Wiley, New York, 1997)

    Google Scholar 

  26. O.C. Zienkiewicz, R.L. Taylor, The finite element method for solid and structural mechanics (Butterworth-Heinemann, Oxford, 2005)

    Google Scholar 

  27. T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000)

    Google Scholar 

  28. E. Onate, F. Zarate, Rotation-free triangular plate and shell elements. Int. J. Numer. Methods Eng. 47, 557–603 (2000)

    Article  Google Scholar 

  29. N. Hamila, P. Boisse, A meso–macro three node finite element for draping of textile composite preforms. Appl. Compos. Mater. 14(4), 235–250 (2007)

    Article  Google Scholar 

  30. P. Boisse, Finite element analysis of composite forming, in Composite Forming Technologies, ed. by A.C. Long (Woodhead Publishing, Cambridge, 2007), pp. 46–79

    Chapter  Google Scholar 

  31. N. Hamila, P. Boisse, F. Sabourin, M. Brunet, A semi‐discrete shell finite element for textile composite reinforcement forming simulation. Int. J. Numer. Methods Eng. 79(12), 1443–1466 (2009)

    Article  Google Scholar 

  32. R. Hill, A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 8, 236–249 (1958)

    Article  Google Scholar 

  33. N. Friedl, F.G. Rammerstorfer, F.D. Fischer, Buckling of stretched strips. Comput. Struct. 78(1–3), 185–190 (2000)

    Article  Google Scholar 

  34. A.G. Prodromou, J. Chen, On the relationship between shear angle and wrinkling of textile composite preforms. Compos. Part A 28A, 491–503 (1997)

    Article  Google Scholar 

  35. G. Lebrun, M.N. Bureau, J. Denault, Evaluation of bias-extension and picture frame test for the measurement of shear properties of PP/glass commingled fabrics. Compos. Struct. 61, 52–341 (2003)

    Article  Google Scholar 

  36. S.B. Sharma, M.P.F. Sutcliffe, S.H. Chang, Characterisation of material properties for draping of dry woven composite material. Compos. Part A 34, 1167–1175 (2003)

    Article  Google Scholar 

  37. B. Zhu, T.X. Yu, J. Teng, X.M. Tao, Theoretical modeling of large shear deformation and wrinkling of plain woven composite. J. Compos. Mater. 43, 125–138 (2009)

    Article  Google Scholar 

  38. J.S. Lightfoot, M.R. Wisnom, K. Potter, Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol. Compos. A: Appl. Sci. Manuf. 51, 99–107 (2013)

    Article  Google Scholar 

  39. A.A. Skordos, C. Monroy Aceves, M.P.F. Sutcliffe, A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos. Part A 38, 1318–1330 (2007)

    Article  Google Scholar 

  40. J. Lee, S. Hong, W. Yu, T. Kang, The effect of blank holder force on the stamp forming behaviour of non-crimp fabric with a chain stitch. Compos. Sci. Technol. 67(3–4), 357–366 (2007)

    Article  Google Scholar 

  41. P. Boisse, N. Hamila, E. Vidal-Sallé, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos. Sci. Technol. 71(5), 683–692 (2011)

    Article  Google Scholar 

  42. L.M. Dangora, C.J. Mitchell, J.A. Sherwood, Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture. Compos. A: Appl. Sci. Manuf. 78, 102–112 (2015)

    Article  Google Scholar 

  43. ITOOL ‘Integrated Tool for Simulation of Textile Composites’. European specific targeted, research project, sixth framework programme, aeronautics and space. http://www.itool.eu

  44. S. Allaoui, P. Boisse, S. Chatel, N. Hamila, G. Hivet, D. Soulat, E. Vidal-Salle, Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos. A: Appl. Sci. Manuf. 42(6), 612–622 (2011)

    Article  Google Scholar 

  45. S. Allaoui, G. Hivet, D. Soulat, A. Wendling, P. Ouagne, S. Chatel, Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int. J. Mater. Form. 7(2), 155–165 (2014)

    Article  Google Scholar 

  46. X.D. Tang, J.D. Whitcomb, General techniques for exploiting periodicity and symmetries in micromechanics analysis of textile composites. J. Compos. Mater. 37(13), 1167–1189 (2003)

    Article  Google Scholar 

  47. S.V. Lomov, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai et~al., Meso-FE modelling of textile composites: Road map and data flow and algorithms. Compos. Sci. Technol. 67(9), 1870–1891 (2007)

    Google Scholar 

  48. S.L. Lemanski, J. Wang, M.P.F. Sutcliffe, K.D. Potter, M.R. Wisnom, Modelling failure of composite specimens with defects under compression loading. Compos. Part A 48, 26–36 (2013)

    Article  Google Scholar 

  49. E. Obert, F. Daghia, P. Ladeveze, L. Ballere, Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization. Compos. Struct. 117, 212–221 (2014)

    Article  Google Scholar 

  50. H. Sekine, P.W. Beaumont, A physically based micromechanical theory of macroscopic stress-corrosion cracking in aligned continuous glass-fibre-reinforced polymer laminates. Compos. Sci. Technol. 58(10), 1659–1665 (1998)

    Article  Google Scholar 

  51. J. Xu, S.V. Lomov, I. Verpoest, S. Daggumati, W. Van Paepegem, J. Degrieck, A comparative study of twill weave reinforced composites under tension–tension fatigue loading: Experiments and meso-modelling. Compos. Struct. 135, 306–315 (2016)

    Article  Google Scholar 

  52. S. Bickerton, P. Simacek, S.E. Guglielmi, S.G. Advani, Investigation of draping and its effects on the mold filling process during manufacturing of a compound curved composite part. Compos. A: Appl. Sci. Manuf. 28(9–10), 801–816 (1997)

    Article  Google Scholar 

  53. P. Potluri, D.P. Ciurezu, R.B. Ramgulam, Measurement of meso-scale shear deformations for modelling textile composites. Compos. A: Appl. Sci. Manuf. 37(2), 303–314 (2006)

    Article  Google Scholar 

  54. N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, P. Boisse, Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography. Compos. Struct. 116, 165–176 (2014)

    Article  Google Scholar 

  55. N. Naouar, E. Vidal-Salle, J. Schneider, E. Maire, P. Boisse, 3D composite reinforcement meso FE analyses based on X-ray computed tomography. Compos. Struct. 132, 1094–1104 (2015)

    Article  Google Scholar 

  56. A. Thompson, B. El Said, M. Such, J.P.-H. Belnoue, S.R. Hallett, Discrete modelling of non-crimp fabric multi-layer preforming processes. In Proceedings of TEXCOMP-12 Conference, Raleigh, NC, 26–29 May 2015

    Google Scholar 

  57. N. Isart, B. El Said, D.S. Ivanov, S.R. Hallett, J.A. Mayugo, N. Blanco, Internal geometric modelling of 3D woven composites: A comparison between different approaches. Compos. Struct. 132, 1219–1230 (2015)

    Article  Google Scholar 

  58. H. Bayraktar, D. Ehrlich, G. Scarat, M. McClain, N. Timoshchuk, C. Redman, Forming and performance analysis of a 3D-woven composite curved beam using meso-scale FEA. SAMPE J. 51(3), 23–29 (2015)

    Google Scholar 

  59. P. Badel, E. Vidal-Sallé, P. Boisse, Large deformation analysis of fibrous materials using rate constitutive equations. Comput. Struct. 86(11), 1164–1175 (2008)

    Article  Google Scholar 

  60. A. Bareggi, Mesoscopic analyses of textile composite reinforcement forming, Internal report, LaMCoS, INSA Lyon (2012)

    Google Scholar 

  61. S. Gatouillat, A. Bareggi, E. Vidal-Sallé, P. Boisse, Meso modelling for composite preform shaping–simulation of the loss of cohesion of the woven fibre network. Compos. A: Appl. Sci. Manuf. 54, 135–144 (2013)

    Article  Google Scholar 

  62. C. Tephany, J. Gillibert, P. Ouagne, G. Hivet, S. Allaoui, D. Soulat, Development of an experimental bench to reproduce the tow buckling defect appearing during the complex shape forming of structural flax based woven composite reinforcements. Compos. A: Appl. Sci. Manuf. 81, 22–33 (2016)

    Article  Google Scholar 

  63. M. Ferretti, A. Madeo, F. Dell’Isola, P. Boisse, Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z. Angew. Math. Phys. 65(3), 587–612 (2014)

    Article  Google Scholar 

  64. M.V. d’Agostino, I. Giorgio, L. Greco, A. Madeo, P. Boisse, Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

    Article  Google Scholar 

  65. R.H.W. Ten Thije, R. Akkerman, Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Compos. A: Appl. Sci. Manuf. 39(7), 1167–1176 (2008)

    Article  Google Scholar 

  66. N. Hamila, P. Boisse, Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos. A: Appl. Sci. Manuf. 53, 109–117 (2013)

    Article  Google Scholar 

  67. A. Madeo, M. Ferretti, F. Dell’Isola, P. Boisse, Thick fibrous composite reinforcements behave as special second-gradient materials: Three-point bending of 3D interlocks. Z. Angew. Math. Phys. 66(4), 2041–2060 (2015)

    Article  Google Scholar 

  68. A. Madeo, G. Barbagallo, M.V. D’Agostino, P. Boisse, Continuum and discrete models for unbalanced woven fabrics. Int. J. Solids Struct. (2016). doi:10.1016/j.ijsolstr.2016.02.005

    Google Scholar 

  69. G. Barbagallo, A. Madeo, I. Azehaf, I. Giorgio, F. Morestin, P. Boisse, Bias extension test on an unbalanced woven composite reinforcement: experiments and modeling via a second gradient continuum approach. J. Compos. Mater. (2016). doi:10.1177/0021998316643577

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Scientific Research Centre (CNRS) in the scope of the project PEPS INSIS and by the European Commission in the scope of the project ITOOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Boisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boisse, P., Hamila, N., Madeo, A. (2017). Analysis of Defect Developments in Composite Forming. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_12

Download citation

Publish with us

Policies and ethics