Skip to main content

BV and BRST Quantization, Quantum Observables and Symmetry

  • Chapter
  • First Online:
The Universal Coefficient Theorem and Quantum Field Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 754 Accesses

Abstract

Gauge redundancy has been a guiding principle for most of the theories about nature. Starting with quantum electrodynamics, continuing with Yang-Mills theories and Quantum Chromodynamics and reaching into the realms of supergravity, all theories appear to obey this principle. The existence of a gauge redundancy therefore appears to be ubiquitous. When performing path integral quantization, gauge fixing is a natural requirement. The existence of unphysical degrees of freedom would otherwise make practical calculations impossible.

I know who I WAS when I got up this morning, but I think I must have been changed several times since then

Lewis Carroll, Alice in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Brunetti, K. Fredenhagen, K. Rejzner, Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058v4

  2. N. Nakanishi, Indefinite-metric quantum field theory of general relativity. Prog. Theor. Phys. 59, 972 (1978)

    Google Scholar 

  3. N. Nakanishi, I. Ojima, Covariant operator formalism of gauge theories and quantum gravity, World Scientific Lecture Notes in Physics vol. 27 (World Scientific Publications, Singapore, 1990)

    Google Scholar 

  4. M. Henneaux, Lectures on the Antifield-BRST formalism for gauge theories. Nucl. Phys. B (Proc. Suppl.) 18A, 47 (1990)

    Google Scholar 

  5. A. Fuster, M. Henneaux, A. Maas, BRST-antifield quantization: a short review. Int. J. Geom. Methods Mod Phys. 2, 939 (2005)

    Google Scholar 

  6. T.A. Larsson, Quantum jet theory i: free fields (2007). arXiv:hep-th/0701164v1

  7. J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach. Contemp. Math. 219, 195 (1998)

    Google Scholar 

  8. J.F. O’Farrill, BRST Cohomology, Lecture Notes at University of Edinburgh (2006)

    Google Scholar 

  9. A.T. Patrascu, On SU(2) anomaly and Majorana Fermions, eprint (2014). arXiv:1402.7283

  10. G. Falqui, C. Reina, BRS cohomology and topological anomalies. Commun. Math. Phys. 102, 503 (1985)

    Google Scholar 

  11. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the anti-field formalism: II. Application to Yang-Mills theory, Commun. Math. Phys. 174, 93 (1995)

    Google Scholar 

  12. R.P. Malik, Dual BRST symmetry for QED. Mod. Phys. Lett. A 16(8), 477 (2001)

    Google Scholar 

  13. E. Getzler, Two dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163, 473 (1994)

    Google Scholar 

  14. K.W. Gruenberg, The Universal coefficient theorem in the cohomology of groups. J. Lond. Math. Soc. 43, 239 (1968)

    Google Scholar 

  15. B.H. Lian, G.J. Zuckerman, BRST cohomology and highest weight vectors I. Commun. Math. Phys. 135, 547 (1991)

    Google Scholar 

  16. K.W. Gruenberg, Resolutions by relations. J. Lond. Math. Soc. 35, 481 (1960)

    Google Scholar 

  17. B.H. Lian, G.J. Zuckerman, BRST-cohomology of the super-virasoro algebras. Commun. Math. Phys. 125, 301 (1989)

    Google Scholar 

  18. G.J. Zuckerman, Modular forms, strings and Ghosts. Proc. Symp. Pure Math. 49, 273 (1989)

    Google Scholar 

  19. D.A. Leites, Cohomologies of Lie superalgebras. Funct. Anal. Appl. 9, 340 (1975)

    Google Scholar 

  20. D. Wigner, Algebraic cohomology of topological groups. Trans. Am. Math. Soc. 178, 83–93 (1973)

    Google Scholar 

  21. A. Borel, Homology and cohomology of compact connected Lie groups. Proc. Nat. Acad. Sci. 39, 1142 (1953)

    Google Scholar 

  22. G.R. Biyogmam, On the harmonic oscillator algebra. Commun. Algebra 44(1), 164 (2015)

    Google Scholar 

  23. T. Pirasvili, On Leibniz homology. Ann. l’institut Fourrier Grenoble 44(2), 401 (1994)

    Google Scholar 

  24. J.M. Casas, E. Khamaladze, M. Ladra, Higher Hopf formula for homology of Leibniz n-algebras. J. Pure Appl. Algebra 214, 797 (2010)

    Google Scholar 

  25. J.L. Loday, T. Pirasvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296, 139 (1993)

    Google Scholar 

  26. J.M. Casas, E. Faro, A.M. Vieites, Abelian extensions of Leibniz algebras. Commun. Algebra 27(6), 2833 (1999)

    Google Scholar 

  27. J. Li, Y. Su, Leibniz central extension on centerless twisted Schrodinger-Virasoro algebra. Front. Math. 3(3), 337 (2008)

    Google Scholar 

  28. C. Roger, J. Unterberger, The Schrodinger-Virasoro Lie group and algebra, representation theory and cohomological study. Ann. Henri Poincare 7, 1477 (2006)

    Google Scholar 

  29. M. Kato, S. Matsuda, Construction of singular vertex operators as degenerate primary conformal fields. Phys. Lett. B 172, 216 (1986)

    Google Scholar 

  30. M. Kato, S. Matsuda, Oscillator representation of Virasoro algebra and Kac determinant. Prog. Theor. Phys. 78(1), 158 (1987)

    Google Scholar 

  31. D. Liu, N. Hu, Leibniz central extensions on some infinite dimensional lie algebras. Commun. Algebra 32(6), 2385 (2004)

    Google Scholar 

  32. E. Dror, Homology spheres. Israel J. Math. 15, 115 (1973)

    Google Scholar 

  33. G.W. Moore, PiTP Lectures on BPS states and Wall-Crossing in d \(=\) 4, N \(=\) 2 theories, PiTP Prospects in Theoretical Physics (2010)

    Google Scholar 

  34. F. Denef, Supergravity flows and D-brane stability. JHEP 0008, 050 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. J. Walcher, Extended holomorphic anomaly and loop amplitudes in open topological strings. Nucl. Phys. B 817(3), 167 (2009)

    Google Scholar 

  36. M.K. Prasad, Ch. Sommerfield, Exact classical solution for ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 35, 760 (1975)

    Google Scholar 

  37. E. Witten, D. Olive, Supersymmetry algebras that include topological charges. Phys. Lett. B 78 97 (1978)

    Google Scholar 

  38. J. Harvey, G. Moore, Algebras, BPS states and strings. Nucl. Phys. B 463, 315 (1996)

    Google Scholar 

  39. J. Harvey, G. Moore, On the algebras of BPS states. Commun. Math. Phys. 197 489 (1998)

    Google Scholar 

  40. A. Chamseddine, M.S. Volkov, Non-abelian BPS monopoles in N \(=\) 4 gauged supergravity. Phys. Rev. Lett. 79, 3343 (1997)

    Google Scholar 

  41. D. Gaiotto, G. Moore, A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation. Adv. Math. 234, 239 (2013)

    Google Scholar 

  42. R. Pandharipande, R.P. Thomas, Stable pairs and BPS invariants. J. Am. Math. Soc. 23, 267 (2010)

    Google Scholar 

  43. A. Bayer, Polynomial Bridgeland stability condition and the large volume limit. Geom. Topol. 13, 2389 (2009)

    Google Scholar 

  44. Y. Toda, Limit stable objects on Calabi-Yau 3-folds. Duke Math. J. 149(1), 157 (2009)

    Google Scholar 

  45. R.P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibration. J. Differ. Geom. 54(2), 367 (2000)

    Google Scholar 

  46. L.I. Nicolaescu, Seiberg-Witten invariants of rational homology 3-spheres. Commun. Contemp. Math. 6(6), 833 (2004)

    Google Scholar 

  47. R. Pandharipande, R.P. Thomas, Curve counting via stable pairs in the derived category. Invent. Math. 178, 407 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei-Tudor Patrascu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrascu, AT. (2017). BV and BRST Quantization, Quantum Observables and Symmetry. In: The Universal Coefficient Theorem and Quantum Field Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46143-4_8

Download citation

Publish with us

Policies and ethics