Skip to main content

Aerobic Anoxygenic Phototrophs: Four Decades of Mystery

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

The aerobic anoxygenic phototrophs (AAP) are an important group of bacteria making up large proportions of bacterial communities in both marine and freshwater systems. They thrive in the extreme conditions of hot springs, hypersaline spring systems, and hydrothermal vents and in the presence of high concentrations of toxic metal(loid) oxides. They likely evolved from the purple non-sulfur bacteria, to fill an oxygenated environmental niche, carrying out oxygen-dependant anoxygenic photosynthesis. Investigations into the ecological significance of AAP are in their infancy, although some speculations have now been proposed. Additionally, modern studies are beginning to touch the paradox that is bacteriochlorophyll a synthesis in the presence of oxygen as well as the role of abundant carotenoids in AAP. The presence of numerous AAP in every environment tested, in addition to their unique photosynthetic arrangement, are mysteries that have garnered much attention among scientists since their discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beatty JT (2005) On the natural selection and evolution of the aerobic phototrophic bacteria. In: Govindjee JT, Beatty HG, Allan JF (eds) Discoveries in photosynthesis. Springer, pp 1099–1104

    Google Scholar 

  • Boeuf D, Cottrell MT, Kirchman DL, Lebaron P, Jeanthon C (2013) Summer community structure of aerobic anoxygenic phototrophic bacteria in the western arctic ocean. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12130

    PubMed  Google Scholar 

  • Boldareva-Nuianzina EN, Bláhová Z, Sobotka R, Koblížek M (2013) Distribution and origin of oxygen-dependent and oxygen-independent forms of mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 79(8):2596–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V (2011) An alphaproteobacterium capable of both aerobic and anaerobic anoxygenic photosynthesis but incapable of photoautotrophy: Charonomicrobium ambiphototrophicum, gen. nov., sp. nov. Photosynth Res 107:257–268

    Article  CAS  PubMed  Google Scholar 

  • Csotonyi JT, Maltman C, Yurkov V (2014) Influence of tellurite on synthesis of bacteriochlorophyll and carotenoids in aerobic anoxygenic phototrophic bacteria. Trends Photochem Photobiol 16:1–17

    CAS  Google Scholar 

  • Csotonyi JT, Maltman C, Swiderski J, Stackebrandt E, Yurkov V (2015) Extremely ‘Vanadiphilic’ multiple metal-resistant and halophilic aerobic anoxygenic phototrophs, strains EG13 and EG8, from hypersaline springs in Canada. Extremophiles 19:127–134

    Article  CAS  PubMed  Google Scholar 

  • Cŭperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M (2013) Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol 79(20):6439–6446

    Article  PubMed  PubMed Central  Google Scholar 

  • Fauteux L, Cottrell M, Kirchman DL, Borrego CM, Garcia-Chaves MC, del Giorgio PA (2015) Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in Northern Lakes. PLoS One. doi:10.1371/journal.pone.0124035

    PubMed  PubMed Central  Google Scholar 

  • Ferrera I, Borrego CM, Salazar G, Gasol JM (2014) Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 16(9):2953–2965

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Chaves MC, Cottrell DL, Derry AM, Bogard MJ, del Giorgio PA (2015) Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquat Microb Ecol 76:71–83. doi:10.3354/ame01770

    Article  Google Scholar 

  • Garcia-Chaves M, Cottrell MT, Kirchman DL, Ruiz-González C, del Giorgio PA (2016) Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME. doi:10.1038/ismej.2015.242

    Google Scholar 

  • Hauruseu D, Koblížek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78(20):7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebermehl M, Klug G (1998) Effect of oxygen on translation and posttranslational steps in expression of photosynthesis genes in Rhodobacter capsulatus. J Bacteriol 180(15):3983–3987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HJ, Cha IT, Yim KJ, Song HS, Cho K, Kim D, Lee HW, Lee JK, Seo MJ, Roh SW, Lee SJ (2014) Citrimicrobium luteum gen. nov., sp. nov., aerobic anoxygenic phototrophic bacterium isolated from the gut of a sea cucumber Stichopus japonicas. J Microbiol 52(10):819–824

    Article  CAS  PubMed  Google Scholar 

  • Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U (2014) Discover of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93(5):1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. doi:10.1093/femsre/fuv032

    PubMed  Google Scholar 

  • Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller R, Rohwerder T (2007) Aquincola tertiaricrbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. IJSEM 57:1295–1303

    CAS  PubMed  Google Scholar 

  • Lehours AC, Jeanthon C (2015) The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European arctic seas but does not favor endemism. Front Microbiol 6(638)

    Google Scholar 

  • Li X, Koblížek M, Feng F, Li Y, Jian J, Zeng Y (2013) Whole-genome sequence of a freshwater aerobic anoxygenic phototroph, Porphyrobacter sp. Strain AAP82, isolated from the Huguangyan Maar Lake in Southern China. Genome Announc 1(2):e0007213

    Google Scholar 

  • Maltman C, Yurkov V (2014) The impact of tellurite on highly resistant marine bacteria and strategies for its reduction. Int J Environ Eng Nat Res 1(3):109–119

    Google Scholar 

  • Maltman C, Yurkov V (2015) The effect of tellurite on highly resistant freshwater aerobic anoxygenic phototrophs and their strategies for reduction. Microorganisms 3:826–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Zhang DC (2013) Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. IJSEM 63:1411–1416

    CAS  PubMed  Google Scholar 

  • Mašín M, Cŭperová Z, Hojerová E, Sallka I, Grossart HP, Koblížek M (2012) Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of Northern Europe. Aquat Microbial Ecol 66:77–86

    Article  Google Scholar 

  • Nuyanzina-Boldareva EN, Gorlenko VM (2014) Roseibacula alcaliphilum gen. nov. sp. nov., a new alkaliphilic aerobic anoxygenic phototrophis bacterium from a meromictic soda lake doroninskoe (East Siberia, Russia). Microbiology 83(4):381–390

    Article  CAS  Google Scholar 

  • Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128

    Article  CAS  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT, Yurkov V (2005) Rosiecyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. IJSEM 55:1597–1603

    CAS  PubMed  Google Scholar 

  • Rathgeber C, Alric J, Hughes E, Vermeglio A, Yurkov V (2012) The photosynthetic apparatus and photoinduced electron transfer in the aerobic phototrophic bacteria Roseicyclus mahoneyensis and Porphyrobacter meromictius. Photosynth Res 110(3):193–203

    Article  CAS  PubMed  Google Scholar 

  • Ritchie AE, Johnson ZI (2012) Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Appl Environ Microbiol 78:2858–2866

    Google Scholar 

  • Rohwerder T, Müller RH, Weichler T, Schuster J, Hübschmann T, Müller S, Harms H (2013) Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology 159:2180–2190

    Article  CAS  PubMed  Google Scholar 

  • Salka I, Srivastava A, Allgaier M, Grossart HP (2014) The draft genome sequence of Sphingomonas sp. Strain FukuSWIS1, obtained from acidic lake grosse fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc 2(6)

    Google Scholar 

  • Sato-Takabe Y, Hamasaki K, Suzuki K (2012) Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains. Arch Microbiol 194:331–341

    Article  CAS  PubMed  Google Scholar 

  • Sato-Takabe Y, Hamasaki K, Suzuki K (2014) Photosynthetic competence of the marine aerobic anoxygenic phototrophic bacterium Roseobacter sp. under organic substrate limitation. Microbes Environ 29(1):100–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato-Takabe Y, Suzuki S, Shishikura R, Hamasaki K, Tada Y, Kataoka T, Yokokawa T, Yoshie N, Suzuki S (2015) Spatial distribution and cell size of aerobic anoxygenic phototrophic bacteria in the Uwa Sea, Japan. J Oceanogr 71:151–159

    Article  CAS  Google Scholar 

  • Selyanin V, Hauruseu D, Koblížek M (2015) The variability of light harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res. doi:10.1007/s11120-015-0197-7

    PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14(2):140–145

    Article  Google Scholar 

  • Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217

    Article  Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieracki ME, Gilg IC, Their IC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46

    Article  Google Scholar 

  • Šlouf V, Fuciman M, Dulebo A, Kaftan D, Koblížek M, Frank HA, Polívka T (2013) Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs. J Phys Chem 117:10987–10999

    Google Scholar 

  • Spring S, Lunsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and it regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4(3), e4866

    Article  PubMed  PubMed Central  Google Scholar 

  • Stegman MR, Cottrell MT, Kirchman DL (2014) Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J 8:2339–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiefel P, Zambelli T, Vorholt JA (2013) Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 79(16):4895–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Muroga Y, Takahama M, Nishimura Y (1999) Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bact 49:629–634

    Google Scholar 

  • Tang K, Zong R, Zhang F, Xiao N, Jiao N (2010) Characterization of the photosynthetic apparatus and proteome of Roseobacter denitrificans. Curr Microbiol 60:124–133

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Liu Y, Liu X, Gu Z, Jiao N, Liu H, Zhou Y, Shen L (2015) Blastomonas aquatica sp. nov., a bacteriochlorophyll-containing bacterium isolated from lake water. IJSEM 65:1653–1658

    CAS  PubMed  Google Scholar 

  • Yurkov V (2006) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow S, Rosenberg F, Schleifer KH, Stackebrandt E (eds) Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 562–584

    Google Scholar 

  • Yurkov V, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov V, Csotonyi J (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. Recent Res Dev Bacteriol 1:247–300

    CAS  Google Scholar 

  • Yurkov V, Csotonyi J (2009) New light on aerobic anoxygenic photosynthesis. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science+Business Media B.V., pp 31–55

    Google Scholar 

  • Yurkov VV, Gemerden H (1993) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89

    Article  CAS  Google Scholar 

  • Yurkov VV, Gorlenko VM (1990) Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a. Microbiol (New York) 59(1):120–126

    CAS  Google Scholar 

  • Yurkov VV, Gorlenko VM (1992a) A new genus of freshwater aerobic bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiol (New York) 60(5):902–907

    Google Scholar 

  • Yurkov VV, Gorlenko VM (1992b) New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Microbiol (New York) 61(2):248–255

    CAS  Google Scholar 

  • Yurkov V, Hughes E (2013) Genes associated with the peculiar phenotypes of the aerobic anoxygenic phototrophs. In: Beatty JT, Jacquot JP, Gadal P (eds) Genome evolution of photosynthetic bacteria, vol 66. Elsevier, pp 327–358

    Google Scholar 

  • Yurkov V, Gad’on N, Drews G (1993a) The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 is not bound to the bacteriochlorophyll a complexes of the photosynthetic apparatus. Arch Microbiol 160:372–376

    Article  CAS  Google Scholar 

  • Yurkov VV, Gorlenko VM, Kompantseva EI (1993b) A new type of freshwater aerobic orange colored bacterium Erythromicrobium gen. nov., containing bacteriochlorophyll a. Microbiol (New York) 61(2):256–260

    Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Stackebrandt E, Buss O, Verméglio A, Gorlenko V, Beatty JT (1997) Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Feng F, Liu Y, Li Y, Koblížek M (2013a) Genome sequences and photosynthesis gene cluster composition of a freshwater aerobic anoxygenic phototroph, Sandarakinorhabdus sp. Strain AAP62, isolated from the Shahu Lake in Ningxia, China. Genome Announc 1(1)

    Google Scholar 

  • Zeng Y, Koblížek M, Feng F, Liu Y, Wu Z, Jian J (2013b) Whole-genome sequencing of an aerobic anoxygenic phototroph, Blastomonas sp. Strain AAP53, isolated from a freshwater desert lake in inner Mongolia. Genome Announc 1(2)

    Google Scholar 

  • Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. IJSEM 65:2410–2419

    CAS  PubMed  Google Scholar 

  • Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V, Yan S, Jiao N (2011) Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS ONE 6(9):e25050. doi:10.1371/journal.pone.0025050

  • Zheng Q, Liu Y, Steindler L, Jiao N (2015) Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic Western Pacific Ocean. FEMS Microbiol Lett. doi:10.1093/femsle/fnv034

    Google Scholar 

Download references

Acknowledgments

This research was supported by an NSERC Canada Discovery Grant and GETS funds from the University of Manitoba held by Dr. V. Yurkov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yurkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yurkov, V., Hughes, E. (2017). Aerobic Anoxygenic Phototrophs: Four Decades of Mystery. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_6

Download citation

Publish with us

Policies and ethics