Skip to main content

Breast Imaging

  • Chapter
  • First Online:
Management of Breast Diseases
  • 1431 Accesses

Abstract

Mammography is the primary imaging modality for breast cancer screening and diagnosis, with ultrasound being the most important adjunctive imaging tool. Breast magnetic resonance imaging is also used in certain screening and diagnostic scenarios. The American College of Radiology breast imaging reporting and data system (BI-RADS) provides a standardized lexicon that improves communication of breast imaging results, allows for patient tracking and quality assurance, and facilitates medical audits. Due to its widespread, international use, the BI-RADS lexicon should be understood by all referring clinicians and will be a focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLelland R, Hendrick RE, Zinninger MD, et al. The American college of radiology mammography accreditation program. Am J Roentgenol. 1991;157:497.

    Article  Google Scholar 

  2. Mammography Quality Standards Act of 1992. Public Law 102539.

    Google Scholar 

  3. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS Atlas, breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.

    Google Scholar 

  4. American College of Radiology. Standards for the performance of screening mammography. [Adopted by the ACR Council 1990, Revised 1994]. In: ACR digest of official actions. Reston, VA: ACR; 1994.

    Google Scholar 

  5. Tabar L, Fagerberg CJ, Gad A, et al. Reduction in mortality from breast cancer after mass screening with mammography: randomized trial from the breast cancer screening working group of the Swedish National Board of Health and Welfare. Lancet. 1985;1:829–32.

    Article  CAS  PubMed  Google Scholar 

  6. National Institutes of Health Consensus Development Panel. National Institutes of Health Consensus Development Panel: breast cancer screening for women 40–49. J Natl Cancer inst. 1997;39:1015–26.

    Google Scholar 

  7. Howlander N, Noone A, Krapcho M, et al. SEER cancer statistics review, 1975–2012. Bethesda, MD: National Cancer Institute; 2015.

    Google Scholar 

  8. Webb ML, Cady B, Michaelson JS, Bush DM, Calvillo KZ, Kopans DB, Smith BL. A failure analysis of invasive breast cancer: most deaths from disease occur in women not regularly screened. Cancer. 2014;120(18):2839–46. doi:10.1002/cncr.28199.

    Article  PubMed  Google Scholar 

  9. Hellquist BN, Duffy SW, Abdsaleh S, et al. Effectiveness of population-based service screening with mammography for women ages 40-49 years: evaluation of the Swedish mammography screening in young women (SCRY) cohort. Cancer. 2011;117(4):714–22. doi:10.1002/cncr.25650 (Epub 2010 Sep 29).

    Article  PubMed  Google Scholar 

  10. Duffy SW, Tabar L, Chen HH, et al. The impact of organized mammography service screening on breast carcinoma mortality in seven Swedish counties. Cancer. 2002;95:458–69.

    Article  PubMed  Google Scholar 

  11. Freer P, Moy L, Demartini WB. Breast cancer screening: understanding the randomized controlled trial. SBI News. 2015;3:25–7.

    Google Scholar 

  12. Joe B, Price E, Parkinson B. Screening in the 40–49 age group. SBI News. 2016;1:12–4.

    Google Scholar 

  13. Independent UK. Panel on breast cancer screening. The benefits and harms of breast cancer screening: an independent review. Lancet. 2012;380:1778–86.

    Article  Google Scholar 

  14. Smith RA, Duffy SW, Gabe R, Tabar L, Yen AM, Chen TH. The randomized trials of breast cancer screening: what have we learned? Radiol Clin North Am. 2004;42:793–806.

    Google Scholar 

  15. Tabar L, Yen AM, Wu WY, et al. Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J. 2015;21:13–20.

    Article  PubMed  Google Scholar 

  16. Duffy SW, Yen AMF, Chen THH, et al. Long-term benefits of breast screening. Breast Cancer Manage. 2012;1:31–8.

    Article  CAS  Google Scholar 

  17. Gotzsche PC, Jorgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev. 2013;6:CD001877.

    Google Scholar 

  18. Broeders M, Moss S, Nystrom L, et al. The impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies. J Med Screen. 2012;19(suppl 1):14–25.

    Article  PubMed  Google Scholar 

  19. Nickson C, Mason KE, English DR, Kavanagh AM. Mammographic screening and breast cancer mortality: a case-control study and meta-analysis. Cancer Epidemiol Biomark Prev. 2012;21:1479–88.

    Article  Google Scholar 

  20. Coldman A, Phillips N, Wilson C, et al. Pan-Canadian study of mammography screening and mortality from breast cancer. J Natl Cancer Inst. 2014;106(11):dju261.

    Google Scholar 

  21. Cancer Intervention and Surveillance Modeling Network. (CISNET) Collaborators. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.

    Article  Google Scholar 

  22. Hendrick RE, Helvie MA. Mammography screening: a new estimate of number needed to screen to prevent one breast cancer death. AJR Am J Roentgenol. 2012;198(3):723–8.

    Article  PubMed  Google Scholar 

  23. Oeffinger KC, Fontham ETH, Etzioni R. Breast cancer screening for women at average risk 2015 guideline update from the American Cancer Society. JAMA. 2015;314(15):1599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siu AL. Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2016;164:279–96.

    Article  PubMed  Google Scholar 

  25. Singletary SE, Allred C, Ashley P, et al. Staging system for breast cancer: revisions for the 6th edition of the AJCC cancer staging manual. Surg Clin North Am. 2003;83(4):803–19.

    Article  PubMed  Google Scholar 

  26. American College of Radiology (ACR). Clinical Practice Guideline for the performance of diagnostic mammography and problem-solving breast evaluation [Adopted by the ACR Council 1994]. In: ACR digest of official actions. Reston, VA: ACR; 1994.

    Google Scholar 

  27. Destounis SV, Morgan R, Arieno A. Screening for dense breasts: digital breast tomosynthesis. AJR Am J Roentgenol. 2015;204:261–4.

    Article  PubMed  Google Scholar 

  28. McDonald ES, Oustimov A, Weinstein SP, et al. Effectiveness of digital breast tomosynthesis compared with digital mammogram: outcome analysis from 3 years of breast cancer screening. JAMA Oncol. 2016;6:737–43.

    Article  Google Scholar 

  29. Rose SL, Tidwell AL, Gujnoch LJ, et al. Implementation of breast tomosynthesis in a routine screening practice: an observational study. AJR Am J Roentgenol. 2013;200(6):1401–8.

    Article  PubMed  Google Scholar 

  30. Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Article  PubMed  Google Scholar 

  31. Friedewald SM, Rafferty EA, Rose SL, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.

    Article  CAS  PubMed  Google Scholar 

  32. Ciatto S, Houssami N, Bernardi D, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 2013;14(7):583–9.

    Article  PubMed  Google Scholar 

  33. Skaane P, Bandos AI, Eben EB, et al. Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images. Radiology. 2014;271(3):655–63. doi:10.1148/radiol.13131391 (Epub 2014 Jan 24).

    Article  PubMed  Google Scholar 

  34. Linver MN, Osuch JR, Brenner RJ, et al. Mammography medical audit: primer for the mammography quality standards act (MQSA). AJR Am J Roentgenol. 1995;165:19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Gold RH, Montgomery CK, Rambo ON. Significance of margination of benign and malignant infiltrative mammary lesions: roentgenologic-pathologic correlation. Am J Roentgenol. 1973;118:881–94.

    Article  Google Scholar 

  36. Hall FM, Storella JM, Silverstone DZ, et al. Nonpalpable breast lesions: recommendations for biopsy based on suspicion of carcinoma at mammography. Radiology. 1988;167:353–8.

    Article  CAS  PubMed  Google Scholar 

  37. Moskowitz M. The predictive value of certain mammographic signs in screening for breast cancer. Cancer. 1983;51:1007–11.

    Article  CAS  PubMed  Google Scholar 

  38. Sickles EA. Nonpalpable, circumscribed, noncalcified solid breast masses: likelihood of malignancy based on lesion size and age of patient. Radiology. 1994;192:439–42.

    Article  CAS  PubMed  Google Scholar 

  39. Brenner RJ, Sickles EA. Acceptability of periodic follow-up as an alternative to biopsy for mammographically detected lesions interpreted as probably benign. Radiology. 1989;171:645–6.

    Article  CAS  PubMed  Google Scholar 

  40. Feig SA. Breast masses: mammographic and sonographic evaluation. Radiol Clin North Am. 1992;30:67–92.

    CAS  PubMed  Google Scholar 

  41. Jackson VP, Dines KA, Bassett LW, et al. Diagnostic importance of radiographic density of noncalcified breast masses: analysis of 91 lesions. AJR Am J Roentgenol. 1991;157:25–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bassett LW. Mammographic analysis of calcifications. Radiol Clin North Am. 1992;30:93–105.

    CAS  PubMed  Google Scholar 

  43. Sickles EA. Mammographic features of 300 Consecutive nonpalpable breast cancers. Am J Roentgenol. 1986;146:661–3.

    Article  CAS  Google Scholar 

  44. Sickles EA. Mammographic features of “early”: breast cancer. Am J Roentgenol. 1984;143:461–4.

    Article  CAS  Google Scholar 

  45. Brown ML, Houn F, Sickles EA, et al. Screening mammography in community practice: positive predictive value of abnormal finding and yield of follow-up diagnostic procedures. Am J Roentgenol. 1995;165:1373–7.

    Article  CAS  Google Scholar 

  46. Robertson CL, Kopans DB. Communication problems after mammographic screening. Radiology. 1989;172:443–4.

    Article  CAS  PubMed  Google Scholar 

  47. Brew MD, Billings JD, Chisholm RJ. Mammography and breast pain. Australas Radiol. 1989;33:335–6.

    Article  CAS  PubMed  Google Scholar 

  48. Jackson VP, Loex AM, Smith DJ. Patient discomfort during screen-film mammography. Radiology. 1998;168:421–3.

    Article  Google Scholar 

  49. Stomper PC, Kopans DB, Sadowsky NL, et al. Is mammography painful? A multicenter patient study. Arch Intern Med. 1988;148:521–4.

    Article  CAS  PubMed  Google Scholar 

  50. Physician Insurer’s Association of America. PIAA breast cancer study, MPL cancer claims mini series: volume 1. Washington, DC: Physician Insurers Association of America; 2013.

    Google Scholar 

  51. Feig SA, Shaber GS, Patchefsky A, et al. Analysis of clinically occult and mammographically occult breast tumors. Am J Roentenol. 1977;128:403–8.

    Article  CAS  Google Scholar 

  52. Mann BD, Giuliano AE, Bassett LW, et al. Delayed diagnosis of breast cancer as a result of normal mammograms. Arch Surg. 1983;118:23–4.

    Article  CAS  PubMed  Google Scholar 

  53. Fornage BD, Lorigan JG, Andry E. Fibroadenoma of the breast: sonographic appearance. Radiology. 1989;172:671–5.

    Article  CAS  PubMed  Google Scholar 

  54. Stavros AT, Thickman D, Rapp CL, et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196:123–34.

    Article  CAS  PubMed  Google Scholar 

  55. Entrekin R, Jackson P, Jago JR, Porter BA. Compound Imaging in breast ultrasound: technology and early clinical experience. Medicamundi. 1999;43(3):35–43.

    Google Scholar 

  56. Rosen EL, Soo MS. Tissue harmonic imaging sonography of breast lesions: improved margin analysis, conspicuity and image quality compared to conventional ultrasound. Clin Imaging. 2001;25(6):379–84.

    Article  CAS  PubMed  Google Scholar 

  57. Mesurolle B, Helou T, El-Khoury M, et al. Tissue harmonic imaging, frequency compound imaging and conventional imaging: use and benefit in breast sonography. J Ultrasound Med. 2007;26(8):1041–51.

    Article  PubMed  Google Scholar 

  58. Rahbar G, Sie AC, Hansen GC, et al. Benign versus malignant solid breast masses: US differentiation. Radiology. 1999;213:889–94.

    Article  CAS  PubMed  Google Scholar 

  59. Gordon PB, Goldenberg SL. Malignant breast masses detected only by ultrasound: a retrospective review. Cancer. 1995;76:626–60.

    Article  CAS  PubMed  Google Scholar 

  60. Buchberger W, Niehoff A, Obrist P, et al. Clinically and mammographically occult breast lesions: detection and classification with high resolution sonography. Semin Ultrasound CT MR. 2002;21:325–36.

    Article  Google Scholar 

  61. Kaplan SS. Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue. Radiology. 2001;221:641–9.

    Article  CAS  PubMed  Google Scholar 

  62. Crystal P, Strano SD, Shcharynski S, et al. Using sonography to screen women with mammographically dense breasts. Am J Roentgenol. 2003;181:177–82.

    Article  Google Scholar 

  63. Kolb TM, Lichy J, Newhouse JH. Occult cancer in women with dense breasts: detection with screening US—diagnostic yield and tumor characteristics. Radiology. 1998;207:191–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27, 825 patient evaluations. Radiology. 2002;225:165–75.

    Article  PubMed  Google Scholar 

  65. Berg WA. Rationale for a trial of screening breast ultrasound: American college of radiology imaging network (ACRIN) 6666. Am J Roentgenol. 2003;180:1225–8.

    Article  Google Scholar 

  66. Berg WA, Blume JD, Cormack JB et al. ACRIN 6666 Investigators. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63. doi:10.1001/jama.299.18.2151.

    Google Scholar 

  67. Sprague BL, Stout NK, Schechter C, et al. Benefits, harms, and cost-effectiveness of supplemental ultrasonography screening for women with dense breasts. Ann Intern Med. 2015;162(3):157–66. doi:10.7326/M14-0692.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Parker SH, Lovin JD, Jobe WE, et al. Stereotactic breast biopsy with a biopsy gun. Radiology. 1990;176:741–7.

    Article  CAS  PubMed  Google Scholar 

  69. Jackson VP, Bassett LW. Stereotactic fine-needle aspiration biopsy for nonpalpable breast lesions. Am J Roentgenol. 1990;154:1196–7.

    Article  CAS  Google Scholar 

  70. Bassett LW, Winchester DP, Caplan RB, et al. Stereotactic core-needle biopsy of the breast. CA Cancer J Clin. 1997;47:171–90.

    Article  CAS  PubMed  Google Scholar 

  71. Sickles EA, Parker SH. Appropriate role of core breast biopsy in the management of probably benign lesions. Radiology. 1993;199:315.

    Article  Google Scholar 

  72. Lee CH, Philpotts LE, Horvath LJ, et al. Follow-up of breast lesions diagnosed as benign with stereotactic coreneedle biopsy: frequency of mammographic change and false negative rate. Radiology. 1999;212:189–94.

    Article  CAS  PubMed  Google Scholar 

  73. Brem RF, Behrndt VS, Sanow L, et al. Atypical ductal hyperplasia: histologic underestimation of carcinoma in tissue harvested from impalpable breast lesions using 11-G stereotactically guided directional vacuum-assisted biopsy. Am J Roentgenol. 1999;172:1405–7.

    Article  CAS  Google Scholar 

  74. Jackman RJ, Nowels W, Rodriguez-Soto J, et al. Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative rates and histologic underestimation rates after long-term follow-up. Radiology. 1999;210:799–805.

    Article  CAS  PubMed  Google Scholar 

  75. Liberman L, Bracero N, Vuolo MA, et al. Percutaneous large-core biopsy of papillary breast lesions. Am J Roentgenol. 1999;172:331–7.

    Article  CAS  Google Scholar 

  76. Liberman L, Sama M, Susnik B, et al. Lobular carcinoma in situ at percutaneous breast biopsy: surgical biopsy findings. Am J Roentgenol. 1999;173:291–9.

    Article  CAS  Google Scholar 

  77. Philpotts LE, Shaheen NA, Carter D, et al. Comparison of rebiopsy rates after stereotactic core-needle biopsy of the breast with 11-G vacuum suction probe vs. 14-G automatic gun. Am J Roentgenol. 1999;172:683–7.

    Article  CAS  Google Scholar 

  78. Brenner RJ, Jackman RJ, Parker SH, et al. Percutaneous core needle biopsy of radial scars of the breast: when is excision necessary? Am J Roentgenol. 2002;179:1179–84.

    Article  Google Scholar 

  79. Foster MC, Helvie MA, Gregory NE, et al. Lobular carcinoma in situ or atypical lobular hyperplasia at coreneedle biopsy: is excisional biopsy necessary? Radiology. 2004;231:813–9.

    Article  PubMed  Google Scholar 

  80. Mahoney MC, Robinson-Smith TM, Shaughnessy EA. Lobular neoplasia at 11-gauge vacuum-assisted stereotactic biopsy: correlation with surgical excisional biopsy and mammographic follow-up. Am J Roentgenol. 2006;187:949–54.

    Article  Google Scholar 

  81. El Yousef SJ, O’Connell DM, Duchesneau RH, et al. Benign and malignant breast disease: magnetic resonance and radiofrequency pulse sequences. Am J Roentgenol. 1985;145:1–8.

    Article  Google Scholar 

  82. Heywang SH, Hahn D, Schmidt H, et al. MR imaging of the breast using gadolinium-DTPA. J Comput Asst Tomogr. 1986;10:199–204.

    Article  CAS  Google Scholar 

  83. Kaiser WA (1992) MRM promises earlier breast cancer diagnosis. Diagn Imaging Int. 11:44–50.

    Google Scholar 

  84. Heywang-Kobrunner SH. Contrast-enhanced MRI of the breast-overview after 1250 patient examinations. Electromedica. 1993;2:43–52.

    Google Scholar 

  85. Harms SE, Flamig DP, Hesley KL, et al. MRI of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology. 1993;186:493.

    Article  Google Scholar 

  86. Gilles R, Guinebretiere JM, Lucidarme O, et al. Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MRI. Radiology. 1994;191:625–31.

    Article  CAS  PubMed  Google Scholar 

  87. Gorczyca DP, Sinha S, Ahn CY, et al. Silicone breast implants in vivo: MR imaging. Radiology. 1992;185:407–10.

    Article  CAS  PubMed  Google Scholar 

  88. Lehman CD, Blume JD, Weatherall P, et al. Screening women at high risk for breast cancer with mammography and magnetic resonance imaging. Cancer. 2005;103:1898–905.

    Article  PubMed  Google Scholar 

  89. Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–37.

    Article  CAS  PubMed  Google Scholar 

  90. Kuhl CK, Schrading S, Leutner CC, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23:8469–76.

    Article  PubMed  Google Scholar 

  91. Leach MO, Boggis CR, Dixon AK, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365:1769–78.

    Article  CAS  PubMed  Google Scholar 

  92. Sardanelli F. Breast MRI imaging in women at high risk of breast cancer. Is something changing in early breast cancer detection? Eur Radiol. 2007;73: 873–87.

    Google Scholar 

  93. Warner E, Plewes DB, Hill KA, et al. Surveil-lance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292:1317–25.

    Article  CAS  PubMed  Google Scholar 

  94. Saslow D, Boetes C, Burke W, et al. American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2009;57:75–89. doi:10.3322/canjclin.57.2.75.

    Article  Google Scholar 

  95. Kuhl CK, Schrading S, Strobel K, et al. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. Clin Oncol. 2014;32(22):2304–10. doi:10.1200/JCO.2013.52.5386 (Epub 2014 Jun 23).

    Article  Google Scholar 

  96. Khalkhali I, Mena I, Jouanne E, et al. Prone scintimammography in patients with suspicion of carcinoma of the breast. J Am Coll Surg. 1994;178:491–7.

    CAS  PubMed  Google Scholar 

  97. Tolmos J, Cutrone JA, Wang B, et al. Scintimammographic analysis of non palpable breast lesions previously identified by conventional mammography. J Natl Cancer Inst. 1998;90:846–9.

    Article  CAS  PubMed  Google Scholar 

  98. Prats E, Carril J, Herranz R, et al. Spanish multicenter scintigraphic study of the breast using Tc99 m MIBI: report of results. Rev Esp Med Nucl. 1998;17:338–50.

    CAS  PubMed  Google Scholar 

  99. Brem RF, Floerke AC, Rapelyea JA, et al. Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247(3):651–7.

    Article  PubMed  Google Scholar 

  100. Shermis RB, Wilson KD, Doyle MT, et al. Supplemental breast cancer screening with molecular breast imaging for women with dense breast tissue. AJR Am J Roentgenol. 2016;17:1–8.

    Google Scholar 

  101. Adler LP, Crowe JP, Al-Kasisi NK, et al. Evaluation of breast masses and axillary lymph nodes with (F-18) 2-Deoxy-2-fluro-D-glucose PET. Radiology. 1993;187:743–50.

    Article  CAS  PubMed  Google Scholar 

  102. Winchester DJ, Sener SF, Winchester DP, et al. Sentinel lymphadencotomy for breast cancer: experience what 180 consecutive patients: efficacy of filtered technetium 99 m sulphur colloid with overnight migration time. J Am Coll Surg. 1999;188:597–603.

    Article  CAS  PubMed  Google Scholar 

  103. Schwartz GF, Guiliano AE, Veronesi U. Consensus conference committee. Proceeding of the consensus conference of the role of sentinel lymph node biopsy in carcinoma or the breast scr; 2002.

    Google Scholar 

  104. Bassett LW, Hendrick RE, Bassford TL, et al. Quality determinants of mammography; clinical practice guideline. No 13. AHCPR Publication 95-0632. Rockville, MD: Agency for Health Care Policy and Research, Public Health Service, U.S. Department of Health and Human Services, October 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne C. Hoyt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoyt, A.C., Tsai, I. (2016). Breast Imaging. In: Jatoi, I., Rody, A. (eds) Management of Breast Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-46356-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46356-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46354-4

  • Online ISBN: 978-3-319-46356-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics