Skip to main content

Developing the Experimental Basis for an Evaluation of Scaling Properties of Brittle and ‘Quasi-Brittle’ Biological Materials

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Abstract

The development of lightweight structures exhibiting a high energy dissipation capacity and a locally adapted puncture resistance is of increasing interest in building construction. As discussed in Chap. 7, inspiration can be found in biology, as numerous examples exist that have evolved one or even several of these properties. Major challenges in this interdisciplinary approach, i.e. the transfer of biological principles to building constructional elements, are scaling (different dimensions) and (at least for the botanic examples) the fact that different material classes constitute the structural basis for the functions of interest. Therefore, a mathematical description of the mechanical properties and the scalability is required that is applicable for both biological and technical materials. A basic requisite for the establishment of mathematical descriptions are well-defined test setups rendering a reliable data basis. In the following, two biological role models from the animal and plant kingdoms are presented, namely, sea urchin spines and coconut endocarp, and two experimental setups for quasi-static and dynamic testing of biological and bio-inspired technical materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Size effects in ductile cellular solids. Part II: experimental results. Int J Mech Sci 43(3):701–713

    Article  Google Scholar 

  • Bauer G, Schmier S, Thielen M, Speck T (2015) Energy dissipation in plants – from puncture resistant seed coats to impact resistant tree barks. In: Yamamoto H, Morita M, Gril J (eds) Proceedings of the 8th plant biomechanics conference, Nagoya, Japan, pp 190–195

    Google Scholar 

  • Bažant ZP (2000) Size effect. Int J Solids Struct 37(1):69–80

    Google Scholar 

  • Bažant ZP (2004) Scaling theory for quasibrittle structural failure. Proc Natl Acad Sci U S A 101(37):13400–13407

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan E, Elevitch CR (2006) Cocos nucifera (coconut). Species Profiles for Pacific Island Agroforestry 2:1–27

    CAS  Google Scholar 

  • Chan YL, Ngan AHW, King NM (2009) Use of focused ion beam milling for investigating the mechanical properties of biological tissues: a study of human primary molars. J Mech Behav Biomed 2(4):375–383

    Article  CAS  Google Scholar 

  • Danzer R (2014) On the relationship between ceramic strength and the requirements for mechanical design. J Eur Ceram Soc 34(15):3435–3460

    Article  CAS  Google Scholar 

  • Danzer R, Supancic P, Pascual J, Lube T (2007) Fracture statistics of ceramics–Weibull statistics and deviations from Weibull statistics. Eng Fract Mech 74(18):2919–2932

    Article  Google Scholar 

  • Franke E, Lieberei R, Reisdorff C (2012) Nutzpflanzen. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc A 221:163–198

    Article  Google Scholar 

  • Grossmann JN, Nebelsick JH (2013) Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorphology 132(3):301–315

    Article  Google Scholar 

  • Krumbholz M, Hieronymus CF, Burchardt S, Troll VR, Tanner DC, Friese N (2014) Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat Commun 5:3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar PS, Ramachandra S, Ramamurty U (2003) Effect of displacement-rate on the indentation behavior of an aluminum foam. Mater Sci Eng A 347(1):330–337

    Article  Google Scholar 

  • Lawn B (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Łysiak G (2007) Fracture toughness of pea: Weibull analysis. J Food Eng 83(3):436–443

    Article  Google Scholar 

  • Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater 48(9):2383–2398

    Article  CAS  Google Scholar 

  • Mouginot R, Maugis D (1985) Fracture indentation beneath flat and spherical punches. J Mater Sci 20(12):4354–4376

    Article  Google Scholar 

  • Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, Dubois P (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Olurin OB, Fleck NA, Ashby MF (2000) Indentation resistance of an aluminium foam. Scr Mater 43(11):983–989

    Article  CAS  Google Scholar 

  • Presser V, Schultheiß S, Berthold C, Nickel KG (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J Bionic Eng 6(3):203–213

    Article  Google Scholar 

  • Seto J, Ma Y, Davis SA, Meldrum F, Gourrier A, Kim YY, Schilde U, Sztucki M, Burghammer M, Maltsev S, Jäger C, Cölfen H (2012) Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci U S A 109(10):3699–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Kamat S, Heuer AH (2000) The structure of sea urchin spines, large biogenic single crystals of calcite. J Mater Sci 35(22):5545–5551

    Article  CAS  Google Scholar 

  • Taylor D (2000) Scaling effects in the fatigue strength of bones from different animals. J Theor Biol 206(2):299–306

    Article  CAS  PubMed  Google Scholar 

  • Wagermaier W, Klaushofer K, Fratzl P (2015) Fragility of bone material controlled by internal interfaces. Calcif Tissue Int 97(3):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials. Generalstabens litografiska anstalts förlag, Stockholm

    Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Winton AL (1901) Anatomy of the fruit of Cocos nucifera. Am J Sci 70:265–280

    Article  Google Scholar 

  • Yang F, Li JC (2013) Impression test—a review. Mat Sci Eng R 74(8):233–253

    Article  Google Scholar 

  • Yu HY, Imam MA, Rath BB (1985) Study of the deformation behaviour of homogeneous materials by impression tests. J Mater Sci 20(2):636–642

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project B01 ‘Scaling of Properties of Highly Porous Biological and Biomimetic Constructions’. The Plant Biomechanics Group Freiburg also thanks E. Heizmann and UNIVEG Freiburg, Germany, for providing the coconuts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Schmier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmier, S. et al. (2016). Developing the Experimental Basis for an Evaluation of Scaling Properties of Brittle and ‘Quasi-Brittle’ Biological Materials. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_14

Download citation

Publish with us

Policies and ethics