Skip to main content

Community Detection Using Synthetic Coordinates and Flow Propagation

  • Chapter
  • First Online:
Emergent Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 24))

  • 1355 Accesses

Abstract

Various applications like finding web communities, detecting the structure of social networks , or even analyzing a graph’s structure to uncover Internet attacks are just some of the applications for which community detection is important. In this paper, we propose an algorithm that finds the entire community structure of a network, based on local interactions between neighboring nodes and on an unsupervised distributed hierarchical clustering algorithm. In this paper, we describe two novel community detection algorithms, one for full graph communities detection and one for single community detection. The novelty of the first proposed approach, named SCCD (to stand for Synthetic Coordinate Community Detection), is the fact that the algorithm is based on the use of Vivaldi synthetic network coordinates computed by a distributed algorithm . We also present an extended version of said algorithm, modified to deal efficiently with community detection on dynamic graphs . Finally, we present a new algorithm which partially analyzes a graph to detect the community of a single node. The current paper not only presents two efficient community finding algorithms, but also demonstrates that synthetic network coordinates could be used to derive efficient solutions to a variety of problems. Experimental results and comparisons with other methods from the literature are presented for a variety of benchmark graphs with known community structure, derived by varying a number of graph parameters and real dataset graphs. The experimental results and comparisons to existing methods with similar computation cost on real and synthetic data sets demonstrate the high performance and robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.csd.uoc.gr/~cpanag/DEMOS/commDetection.htm.

  2. 2.

    Connections with nodes that have high stored flow.

  3. 3.

    In order to speed up the algorithm, we search for the global minimum in the range \([|n(s)|,\frac{|\{x \in V : S(x) > 0\} |}{2}]\).

  4. 4.

    goo.gl/867M4z.

References

  1. Flake, G.W., Lawrence, S., Lee Giles, C., Coetzee, F.M.: Self-organization and identification of web communities. IEEE. Comput. 35, 66–71 (2002)

    Google Scholar 

  2. Katsaros, Dimitrios, Pallis, George, Stamos, Konstantinos, Vakali, Athena, Sidiropoulos, Antonis, Manolopoulos, Yannis: Cdns content outsourcing via generalized communities. IEEE Trans. Knowl. Data Eng. 21, 137–151 (2009)

    Article  Google Scholar 

  3. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  5. Hsieh, M.-H., Magee, C.L.: A new method for finding hierarchical subgroups from networks. Soc. Netw. 32(3), 234–244 (2010)

    Google Scholar 

  6. Papadopoulos, S., Skusa, A., Vakali, A., Kompatsiaris, Y., Wagner, N.: Bridge bounding: a local approach for efficient community discovery in complex networks. Technical Report. arXiv:0902.0871 (2009)

  7. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3):033015+ (2009)

    Google Scholar 

  8. Xie, J., Chen, M., Szymanski, B.K.: LabelRankT: Incremental Community Detection in Dynamic Networks via Label Propagation, at SIGMOD. arXiv:1305.2006 (2013). Comments: DyNetMM 2013, New York, USA (conjunction with SIGMOD/PODS 2013)

  9. Alvari, H., Hajibagheri, A., Reese Sukthankar, G.: Community detection in dynamic social networks: a game-theoretic approach. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2014, Beijing, China, August 17–20, 2014, pp. 101–107 (2014)

    Google Scholar 

  10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coordinate system. In: Proceedings of the ACM SIGCOMM ’04 Conference (2004)

    Google Scholar 

  11. Papadakis, H., Fragopoulou, P., Panagiotakis, C.: Distributed community detection: finding neighborhoods in a complex world using synthetic coordinates. In: ISCC’11, pp. 1145–1150 (2011)

    Google Scholar 

  12. Lancichinetti, Andrea, Fortunato, Santo: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5 Pt 2), 056117 (2009)

    Article  Google Scholar 

  13. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Google Scholar 

  14. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science, 2006, FOCS’06, pp. 475–486. IEEE (2006)

    Google Scholar 

  15. Hui, P., Yoneki, E., Yan Chan, S., Crowcroft, J.: Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, p. 7. ACM (2007)

    Google Scholar 

  16. Derényi, Imre, Palla, Gergely, Vicsek, Tamás: Clique Percolation in random networks. Phys. Rev. Lett. 94(16), 160–202 (2005)

    Article  MATH  Google Scholar 

  17. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society (2005)

    Google Scholar 

  18. Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B—Condens. Matter Complex Syst. 38(2), 331–338 (2004)

    Article  Google Scholar 

  19. Van Dongen, Stijn: Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30, 121–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bagrow, James P., Bollt, Erik M.: Local method for detecting communities. Phys. Rev. E 72(4), 46–108 (2005)

    Article  Google Scholar 

  21. Chen, Jie, Saad, Yousef: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24, 1216–1230 (2012)

    Article  Google Scholar 

  22. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Mech, E.L.J.S.: Fast unfolding of communities in large networks. J. Stat. Mech P10008 (2008)

    Google Scholar 

  23. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases—Volume Part I, ECML PKDD’11, pp.s 44–59. Springer, Berlin (2011)

    Google Scholar 

  24. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. 104(18), 7327 (2007)

    Article  Google Scholar 

  25. Nguyen, N.P., Dinh, T.N., Shen, Y., Thai, M.T.: Dynamic social community detection and its applications. Dynamic social community detection and its applications. PLoS ONE 9(4), e91431 (2014)

    Article  Google Scholar 

  26. Palla, G., Pollner, P., Barabási, A.-L., Vicsek, T.: Social group dynamics in networks. In: Adaptive Networks, pp. 11–38. Springer, Berlin (2009)

    Google Scholar 

  27. Alvari, H., Hashemi, S., Hamzeh, A.: Detecting overlapping communities in social networks by game theory and structural equivalence concept. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI (2), volume 7003 of Lecture Notes in Computer Science, pp. 620–630. Springer (2011)

    Google Scholar 

  28. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 450–465 (1999)

    Article  Google Scholar 

  29. Papadakis, Harris, Panagiotakis, Costas, Fragopoulou, Paraskevi: Distributed community detection in complex networks using synthetic coordinates. J. Stat. Mech: Theory Exp. 2014(3), P03013 (2014)

    Article  Google Scholar 

  30. Papadimitriou, Christos H., Steiglitz, Kenneth: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall Inc., Upper Saddle River (1982)

    MATH  Google Scholar 

  31. Strehl, Alexander, Ghosh, Joydeep, Cardie, Claire: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Cornell kdd cup

    Google Scholar 

  33. Stanford large network dataset collection. http://snap.stanford.edu/data/

  34. Almeida, H., Guedes, D., Meira, W., Zaki, M.: Is there a best quality metric for graph clusters? In: Machine Learning and Knowledge Discovery in Databases, pp. 44–59 (2011)

    Google Scholar 

  35. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’10, pp. 176–183, Washington, DC, USA. IEEE Computer Society (2010)

    Google Scholar 

  36. Lancichinetti, Andrea, Fortunato, Santo: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  37. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 177–187, New York, NY, USA. ACM (2005)

    Google Scholar 

  38. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (2014)

  39. KDD 2003. Kddcup dataset. http://www.cs.cornell.edu/projects/kddcup/datasets.html (2003)

  40. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35 (2013)

    Google Scholar 

  41. Opsahl, Tore, Panzarasa, Pietro: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  42. Coscia, Michele, Giannotti, Fosca, Pedreschi, Dino: A classification for community discovery methods in complex networks. Stat. Anal. Data Mining: ASA Data Sci. J. 4(5), 512–546 (2011)

    Article  MathSciNet  Google Scholar 

  43. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72(4), 046108 (2005)

    Google Scholar 

  44. Spielman, D.A., Teng, S.-H.: A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning. arXiv preprint arXiv:0809.3232 (2008)

  45. Panagiotakis, C., Papadakis, H., Fragopoulou. P.: Coviflowpro: a community visualization method based on a flow propagation algorithm. In: International Conference on Bio-inspired Information and Communications Technologies (2014)

    Google Scholar 

  46. Panagiotakis, C., Fragopoulou, P.: Voting clustering and key points selection. In: International Conference on Computer Analysis of Images and Patterns (2013)

    Google Scholar 

  47. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Google Scholar 

  48. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inform. Theory 51(7), 2282–2312 (2005)

    Google Scholar 

  49. Network databases—University of Notre Dame. http://www3.nd.edu/

Download references

Acknowledgments

This research has been partially co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Programs: ARCHIMEDE III-TEI-Crete-P2PCOORD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Fragopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fragopoulou, P., Papadakis, H., Panagiotakis, C. (2017). Community Detection Using Synthetic Coordinates and Flow Propagation. In: Adamatzky, A. (eds) Emergent Computation . Emergence, Complexity and Computation, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-46376-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46376-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46375-9

  • Online ISBN: 978-3-319-46376-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics