Skip to main content

A Less Known Side of Quantum Cryptography

  • Chapter
  • First Online:
Emergent Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 24))

Abstract

The most tangible impact of quantum information processing that we can perceive today is undoubtedly in the area of quantum cryptography. Quantum key distribution protocols, starting with the groundbreaking BB84, are at the heart of actual physical equipment designed to ensure the security of network communications through quantum means. But, despite their practical success, some important questions related to these protocols remain insufficiently explored, even to the point where they give rise to false myths. This chapter dispels these myths showing what is the exact condition necessary to achieve genuine quantum key distribution (and not just key enhancement), how authentication can also be done quantum mechanically and how testing for possible acts of eavesdropping can also be done on qubits that were never “touched” while in transit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984). Bangalore, India, December 1984

    Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blinov, B.B., Moehring, D.L., Duan, L.M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  Google Scholar 

  6. Cirac, I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  7. Cirac, I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997). http://arxiv.org/abs/quant-ph/9611017

  8. Davidovich, L., et al.: Quantum switches and nonlocal microwave fields. Phys. Rev. Lett. 71(15), 2360–2363 (1993)

    Article  Google Scholar 

  9. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996). http://arxiv.org/abs/quant-ph/9604039

  10. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gulde, S., et al.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48–50 (2003)

    Article  Google Scholar 

  12. Lomonaco Jr., S.J. (ed.): Quantum Computation: a grand mathematical challenge for the twenty-first century and the millennium, In: Proceedings of Symposia in Applied Mathematics, vol. 58. American Mathematical Society, Short Course, Washington, DC (2000)

    Google Scholar 

  13. Nagy, N., Akl, S.G.: Authenticated quantum key distribution without classical communication. Parallel Process. Lett., Spec. Issue Unconv. Comput. Prob. 17(3), 323–335 (2007)

    Article  MathSciNet  Google Scholar 

  14. Nagy, M., Akl, S.G.: Coping with decoherence: parallelizing the quantum Fourier transform. Parallel Process. Lett., Spec. Issue Adv. Quantum Comput. 20(3), 213–226 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nagy, N., Akl, S.G.: Quantum authenticated key distribution. In: Proceedings of International Conference on Unconventional Computation. Lecture Notes in Computer Science, vol. 4618, pp. 127–136. Springer, Heidelberg (2007)

    Google Scholar 

  16. Nagy, N., Nagy, M., Akl, S.G.: Key distribution versus key enhancement in quantum cryptography. Parallel Process. Lett., Spec. Issue Adv. Quantum Comput. 20(03), 239–250 (2010)

    Article  MathSciNet  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  18. Rivest, R.L., Shamir, A., Adleman, L.M.: A method of obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, B.S., Li, J., Liu, J.M., Fan, X.F., Guo, G.C.: Quantum key distribution and quantum authentication based on entangled states. Phys. Lett. A 281(2–3), 83–87 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Spec. Issue Quantum Comput. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Turchette, Q., et al.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)

    Article  MathSciNet  Google Scholar 

  23. Vaudenay, S.: A Classical Introduction to Cryptography: Applications for Communications Security. Springer (2006)

    Google Scholar 

  24. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naya Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagy, N., Nagy, M., Akl, S.G. (2017). A Less Known Side of Quantum Cryptography. In: Adamatzky, A. (eds) Emergent Computation . Emergence, Complexity and Computation, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-46376-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46376-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46375-9

  • Online ISBN: 978-3-319-46376-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics